gravitational collapse in sd
play

Gravitational Collapse in SD Andrea Napoletano Sapienza Universit` - PowerPoint PPT Presentation

SD@Convergence Workshop Gravitational Collapse in SD Andrea Napoletano Sapienza Universit` a di Roma In collaboration with: Flavio Mercati Henrique Gomes Tim Koslowski Isotropic Wormhole Solution 2 1 1 + 4 ds 2 =


  1. SD@Convergence Workshop Gravitational Collapse in SD Andrea Napoletano Sapienza Universit` a di Roma In collaboration with: Flavio Mercati Henrique Gomes Tim Koslowski

  2. Isotropic Wormhole Solution � 2 � 1 − α 1 + α � 4 � ds 2 = dt 2 + � dr 2 + r 2 d Ω 2 � 4 r 1 + α 4 r 4 r ◮ No Singularity ◮ Symmetry under inversion r → α 2 16 r ◮ Two Schwarzschild exteriors glued together at the throat THE ISOTROPIC SOLUTION IS ETERNAL “A Birkhoff theorem for Shape Dynamics” H. Gomes arXiv:1305.0310

  3. The Thin Shell Model WHAT? Dynamical creation of the isotropic solution through gravitational collapse HOW? Spherically symmetric infinitely thin shell of dust

  4. The Thin Shell Model: Starting Point Metric tensor and conjugate momentum  f  µ 2 0 0  0 0  µ p ij = sin ( θ ) 1 g ij = 0 σ 0  0 2 s 0      σ sin ( θ ) 2 0 0 1 2 s sin ( θ ) − 2 0 0 Hamiltonian, diffeo and conformal constraints � P 2 1 2 f σµ 2 s − f 2 µ 3 + µ ( σ ′ ) 2 + 4 σµ 3 + 4 σµ ′ σ ′ − 4 σµσ ′′ � � µ 2 + M 2 = δ ( r − R ) 2 σµ 2 P µ f ′ − 1 2 s σ ′ = − δ ( r − R ) 2 µ f + s σ = 0

  5. Solution to Constraints Solutions Integration Constants ◮ f = p rr µ = A ◮ A in , A out √ σ ◮ α in , α out ( σ ′ ) 2 ◮ µ 2 = g rr = 4 α √ σ + 4 σ + A 2 σ 4 spatial integration constants 2 inside the shell, 2 outside the shell

  6. Metric EoM and LFE Metric Tensor � σ sN 2 f µ 2 N � � � � + 2 µξµ ′ + 2 µ 2 ξ ′ j sin 2 θ � δ r i δ r + ξσ ′ δ θ i δ θ j + δ φ i δ φ ˙ g ij = j + σ µ Conjugate Momentum sin θ p ij = − 5 f 2 N µ 2 + 4 σ ( N ′ σ ′ − µ 2 ξ f ′ ) + N ( − 4 σµ 2 + ( σ ′ ) 2 ) + 4 f σµ ( ξµ ′ + µξ ′ ) � � δ i r δ j ˙ r 4 σµ 3 sin θ � ( f 2 N µ 3 + N µ ( σ ′ ) 2 + 2 σ 2 ( 2 N ′ µ ′ + µ 2 ( ξ s ′ + s ξ ′ ) − 2 µ N ′′ ) + 4 σ 2 µ 2 − 2 σ ( − N σ ′ µ ′ + µ ( N ′ σ ′ + N σ ′′ ))) φ sin − 2 θ � � δ i θ δ j θ + δ i φ δ j � P 2 /µ 4 + sin θδ i r δ j N ( R ) δ ( r − R ) r � P 2 /µ 2 + M 2 2 Lapse Fixing Equation 1 6 f 2 N µ 3 + 4 σ 2 N ′ σ ′ + N σ ′′ � + N σ ′ µ ′ + N µ 3 � � � � + N µ ( σ ′ ) 2 − µ 4 σµ 2 P 2 /µ 2 3 Ns 2 − 8 N ′′ � + σ 2 � � + 8 N ′ µ ′ �� µ + N δ ( r − R ) = 0 � P 2 /µ 2 + M 2 2

  7. Solutions to EoM Lapse function � r σ ′ dy µ 3 ( y ) � � N = c 1 + c 2 2 µ √ σ ( σ ′ ( y )) 2 r a Shift vector ξ = ˙ σ A σ ′ + 2 σ ′ N ( r ) 1 σ Metric tensor and conjugate momentum c 2 = − 2 ˙ α = 0 ˙ A

  8. Assumptions and jump conditions Integration Constants A in A out α in α out c 1 in c 1 out Assumptions Jump Conditions ◮ Continuity of the metric tensor ◮ Diffeo constraint ◮ No mass inside the shell ◮ Hamiltonian constraint ◮ Asymptotic flatness at infinity ◮ LFE ◮ Continuity of the Lapse ◮ EoM for p ij ◮ N = 1 at infinity A in A out α out c 1 out α in = 0

  9. Reduced Phase Space On-Shell Relation � M 2 � M 2 ρ 2 � M 2 � 2 + ρ A out 2 + A in A out − ρ 3 ( α out ) 2 − ( α out + ρ ) A in − α out − 2 ρ − α out − 2 ρ = 0 16 ρ 8 32 ρ Independent Variables ◮ ρ = σ ( R ) = g θθ ( R ) Area of the Shell ◮ A in A out Related to the Momentum P ◮ α out Related to the ADM mass UNDERDETERMINED SYSTEM The on-shell relation and the condition α out = const . define a 2-dimensional manifold - not a one dimensional curve

  10. What is the under determination? ◮ Spherically symmetric thin shell ◮ Conformal constraint g ij p ij = 0 ◮ General result: Birkhoff Theorem Schwarzschild space-time in maximal foliation MAXIMAL FOLIATION OF SCHWARZCHILD IS NOT UNIQUE “3+1 Formalism in General Relativity” E.Gourgoulhon

  11. GR point of view Isotropic static foliation A out = 0 � 2 � 1 − α α � 4 � � ds 2 = dt 2 + dr 2 + r 2 d Ω 2 4 r � 1 + 1 + α 4 r 4 r C foliation C ↔ A out 1 ds 2 = f ( C ( τ )) ˙ C ( τ ) 2 d τ 2 + g ( C ( τ )) ˙ dy 2 + y 2 d Ω 2 C ( τ ) d τ dr + 2 . y + C ( τ ) 2 1 + α 4 y 2 A 4-dimensional diffeomorphism connects the two solutions THERE IS NO AMBIGUITY IN GR

  12. Why then the ambiguity in SD? ◮ SD rests on a preferred notion of simultaneity ◮ SD symmetries are 3d diffeomorphisms and 3d conformal transformations ◮ The 2 maximal foliations of Schwarzschild are not connected by a 3d conformodiffeo What fixes A out ? The rest of the universe

  13. Twin Shell Model SD is naturally defined in a compact universe A spherically symmetric compact universe with S 3 topology is the simplest model ds 2 = d ψ 2 + sin 2 ψ d θ 2 + sin 2 θ d φ 2 � � B N S It requires at least two thin shell to not have any mass at the origin

  14. The twin shell model: Starting point Ansatz � f � µ 2 , σ, σ sin 2 θ p ij = diag 2 s sin − 2 θ ξ i = { ξ, 0 , 0 } � � , 1 2 s , 1 g ij = diag sin θ µ Hamiltonian Constraint   p ij T p T  � √ g − √ g R � ij � p � 2 − 12 Λ � � g rr P 2 − 1  + 4 π � a + M 2 d θ d φ δ ( ψ − Ψ a ) a = 0 √ g 6 a ∈{ S , N } Diffeo constraint � d θ d φ ∇ j p j i − 4 π δ ψ � − 2 δ ( ψ − Ψ a ) P a = 0 i a ∈{ S , N } Conformal constraint: CMC Foliation g ij p ij − √ g � p � = 0

  15. Solutions to EoM and OS Relation Diffeo and Hamiltonian constraints ( σ ′ ) 2 A µ 2 = f = 1 3 � p � σ + 1 1 2 + 4 σ + A 2 ( 2 σ + 1 � p � 2 − 12 Λ σ 2 σ 2 3 A � p � + 4 α ) σ � � 9 We get two on shell relations M 4 � � � � A B A S S 2 − M 2 2 � 2 16 � + 4 − T ρ S − 4 A B − A S 2 − 4 T S 4 ρ S 16 ρ S ρ S M 2 � � X + X 2 = 0 S 4 � � − 3 A S A S − A B + 2 ρ S ρ S M 4 � � � � A B A N 16 ρ N 2 − M 2 N 2 � 2 16 � + 4 − T ρ N − 4 A B − A N 2 − 4 T N ρ N 4 ρ N � M 2 � X + X 2 = 0 N 4 − 3 A N � A N − A B � + 2 ρ N ρ N � 2 � 1 ρ 2 = σ (Ψ) � 12 Λ − � p � 2 � X = A B � p � + 4 α B T = 3 9

  16. Twin Shell DoF ◮ ρ S ρ N ◮ 2 on shell relations ◮ A S A N A B ◮ α S = 0 α N = 0 ; α B = const ◮ α S α N α B ◮ � p � V 4 matter DoF (2 for each shell) 2 scale DoF (volume and momentum) THE SYSTEM IS FULLY DETERMINED

  17. Towards Asymptotic Flatness ◮ Take the limit A N → ∞ ◮ Set to 0 each of the coefficients of A N ◮ 3 equations that can be solved in terms of ρ n α B A B 2 possible solutions � � � � � 16 − M 2 � 16 − M 2 � 1 � 4 − N T � 4 − N T 1 � � � � 16 − M 2 ρ N = , α B = − N T + , A B = 0 2 T 2 T 8 2 � � � � 1 � � 16 − M 2 � 16 − M 2 N T + 4 N T + 4 � 1 � � � 16 − M 2 � � ρ N = , α B = N T − A B = 0 2 T 8 2 2 T Asymptotic flatness becomes a good approximation for T → 0 V ∝ 1 T ⇔ lim T → 0 V = ∞

  18. Deriving A out = 0 Late time limit T → 0 M N M N ρ N → α B → − A B → 0 4 4 M 2 √ 2 N T → 0 − ρ N ∼ → ∞ α B ∼ − A B → 0 √ T 32 ρ N → M N α out = α B = − M N A out = A B = 0 4 4

  19. Reduced phase space A out = 0 On Shell Relation for the Thin Shell M 2 ρ 2 M 2 � � 2 − ρ 3 ( α out ) 2 − ( α out + ρ ) A in − α out − 2 ρ = 0 8 32 ρ A out diverges when the dynamics freezes or the shell escapes

  20. Thin Shell Symplectic Reduction Symplectic potential � drd θ d φ p ij δ g ij + 4 π P δ R θ = � R � ∞ � � dr µ dr µ − 8 π √ σ + δ A out + 4 π P δ R δ A in √ σ 0 R Symplectic form � � µ ( R ) µ ( R ) ω = δθ = − 8 π δ A in − δ A out ∧ δ R , � � σ ( R ) σ ( R ) ω = 4 π δ P ∧ δ R P and R are the conjugate dynamical variables

  21. ADM Mass Definition 1 � � � r 2 sin θ ∇ j g rj − ¯ ¯ g ij g ij ∇ r ¯ M ADM = lim d θ d φ 16 π r →∞ � � M ADM = 1 r µ 2 − σ ′ + 1 2 lim r σ r →∞ Assumption: Asymptotic flatness lim r →∞ σ = r 2 M ADM = − α out 2 α out plays the role of the ADM Hamiltonian

  22. Thin Shell A out = 0 : Isotropic Gauge Isotropic gauge condition & A out = 0 µ 2 r σ ( r ) = 1 1 − α out � 4 σ ( r ) = r 2 � ⇒ r 2 4 r EoM in terms of R and P : α out ( R , P ) ◮ On shell relation M 2 ρ 2 M 2 � � 2 − ρ 3 ( α out ) 2 − ( α out + ρ ) A in − α out − 2 ρ = 0 8 32 ρ ◮ Isotropic relation � 4 � α out ρ 2 = R 2 1 − 4 R ◮ Diffeo jump condition RP A in − = 0 2 The solution of this system α out = α out ( R , P )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend