granger causality and dynamic structural
play

Granger Causality and Dynamic Structural Systems 1 Halbert White and - PowerPoint PPT Presentation

Granger Causality and Dynamic Structural Systems 1 Halbert White and Xun Lu Department of Economics, University of California, San Diego December 10, 2009 1 forthcoming, Journal of Financial Econometrics 1/35 Objective Relate Granger


  1. Granger Causality and Dynamic Structural Systems 1 Halbert White and Xun Lu Department of Economics, University of California, San Diego December 10, 2009 1 forthcoming, Journal of Financial Econometrics 1/35

  2. Objective Relate Granger causality to a notion of structural causality � Granger ( G ) causality Granger, 1969 and Granger and Newbold, 1986 � Structural causality White and Kennedy, 2008 and White and Chalak "Settable Systems," JMLR 2009 2/35

  3. Outline 1. Granger causality, a dynamic DGP and structural causality 2. Granger causality and time-series natural experiments 3. Granger causality and structural vector autoregressions (VARs) 4. Testing …nite-order Granger causality 5. Conditional exogeneity 6. Applications 7. Conclusions 3/35

  4. 1. Granger causality, a dynamic DGP and structural causality 4/35

  5. Granger causality Notation � subscript t denotes a variable at time t . � superscript t denotes a variable’s " t -history", (e.g., Y t � f Y 0 , Y 1 , ..., Y t g ). De…nition 2.1: Granger non-causality Let f Q t , S t , Y t g be a sequence of random vectors. Suppose that Y t ? Q t j Y t � 1 , S t t = 1 , 2 , ... . Then Q does not G � cause Y w.r.t. S . Else Q G � causes Y w.r.t. S . 5/35

  6. Data generating process (DGP) Assumption A.1 (White and Kennedy, 2009) Let f D t , U t , W t , Y t , Z t ; t = 0 , 1 , ... g be a stochastic process. Further, suppose that ( D t � 1 , U t , W t , Z t ) , D t ( ( Y t � 1 , D t , U t , W t , Z t ) Y t ( where, for an unknown measurable k y � 1 function q t , f Y t g is structurally generated as Y t = q t ( Y t � 1 , D t , Z t , U t ) , t = 1 , 2 , .... 6/35

  7. Data generating process (DGP) � Y t = q t ( Y t � 1 , D t , Z t , U t ) , t = 1 , 2 , .... � f D t , W t , Y t , Z t g observable; f U t g unobservable � Interested in � e¤ects of D t on Y t (time-series natural experiment) 2 , t ) 0 , e¤ects of Y t � 1 � with Y t = ( Y 0 1 , t , Y 0 on Y 1 , t (structural 2 VAR) 7/35

  8. Structural causality De…nition 3.1 (Direct causality: structural VAR) Given A.1, for given t > 0 , j 2 f 1 , ..., k y g , and s , suppose ( i ) for all admissible values of y t � 1 ( s ) , d t , z t , and u t , y t � 1 ! q j , t ( y t � 1 , d t , z t , u t ) is constant in y t � 1 . s s Then Y t � 1 does not directly structurally cause Y j , t : s d Y t � 1 6) S Y j , t s d Else Y t � 1 directly structurally causes Y j , t : Y t � 1 ) S Y j , t s s Notation: : sub-vector of y t � 1 with elements indexed by non-empty � y t � 1 s set s � f 1 , ..., k y g � f 0 , ..., t � 1 g ( s ) : sub-vector of y t � 1 with elements of s excluded. � y t � 1 8/35

  9. Structural causality De…nition 3.1 (Direct causality: time-series natural experiment) Given A.1, for given t > 0 , j 2 f 1 , ..., k y g , and s , suppose that ( ii ) for all admissible values of y t � 1 , d t ( s ) , z t , and u t , d t s ! q j , t ( y t � 1 , d t , z t , u t ) is constant in d t s . d Then D t s does not directly structurally cause Y jt : D t 6) S Y j , t s d Else D t s directly structurally causes Y j , t : D t ) S Y j , t s Notation: s : sub-vector of d t with elements indexed by non-empty set � d t s � f 1 , ..., k d g � f 0 , ..., t g ( s ) : sub-vector of d t with the elements of s excluded � d t 9/35

  10. Structural causality � Recursive substitution of Y t = q t ( Y t � 1 , D t , Z t , U t ) , t = 1 , 2 , .... yields Y t = r t ( Y 0 , D t , Z t , U t ) , t = 1 , 2 , ..., De…nition 3.2 (Total causality: time-series natural experiment) Given A.1, suppose for all admissible values of y 0 , z t , and u t , d t ! r t ( y 0 , d t , z t , u t ) is constant in d t . Then D t does not structurally cause Y t : D t 6) S Y t Else D t structurally causes Y t : D t ) S Y t 10/35

  11. 2. Granger causality and time-series natural experiments 11/35

  12. G-causality, conditional exogeneity, and direct causality � Let X t � ( W t , Z t ) , t = 0 , 1 , ... . Assumption A.2 ( a ) (conditional exogeneity) D t ? U t j Y t � 1 , X t , t = 1 , 2 , .... d Proposition 4.1 Let A.1 and A.2 ( a ) hold. If D t 6) S Y t , t = 1 , 2 , ... , then D does not G � cause Y w.r.t. X . 12/35

  13. G-causality, conditional exogeneity, and direct causality De…nition 4.3 Suppose A.1 holds and that for each y 2 supp ( Y t ) there exists a measurable mapping ( y t � 1 , x t ) ! f t , y ( y t � 1 , x t ) such that w . p . 1 Z 1 f q t ( Y t � 1 , D t , Z t , u t ) < y g dF t ( u t j Y t � 1 , X t ) = f t , y ( Y t � 1 , X t ) Then D t does not directly cause Y t w.p.1 w.r.t. ( Y t � 1 , X t ) : d D t 6) S ( Y t � 1 , X t ) Y t . Else D t directly causes Y t with pos. prob. w.r.t. ( Y t � 1 , X t ) : d D t ) S ( Y t � 1 , X t ) Y t . 13/35

  14. G-causality, conditional exogeneity, and direct causality Theorem 4.4 d Let A.1 and A.2 ( a ) hold. Then D t 6) S ( Y t � 1 , X t ) Y t , t = 1 , 2 , ..., if and only if D does not G � cause Y w.r.t. X. 14/35

  15. Finite-order G-causality and Markov structures Notation: …nite histories Y t � 1 � ( Y t � ` , ..., Y t � 1 ) and Q t � ( Q t � k , ..., Q t ) . De…nition 4.8 Let f Q t , S t , Y t g be a sequence of random variables, and let k � 0 and ` � 1 be given …nite integers. Suppose Y t ? Q t j Y t � 1 , S t , t = 1 , 2 , ... Then Q does not …nite-order G � cause Y w.r.t. S. Else Q …nite-order G � causes Y w.r.t. S . 15/35

  16. Finite-order G-causality and Markov structures Notation: …nite histories D t � ( D t � k , ..., D t ) , Z t � ( Z t � m , ..., Z t ) , X t � ( X t � τ 1 , ..., X t + τ 2 ) Assumption B.1 A.1 holds, and for k , ` , m 2 N , ` � 1 , Y t = q t ( Y t � 1 , D t , Z t , U t ) , t = 1 , 2 , .... Assumption B.2 For k , ` , and m as in B.1 and for τ 1 � m , τ 2 � 0, suppose D t ? U t j Y t � 1 , X t , t = 1 , ..., T � τ 2 . 16/35

  17. Finite-order G-causality and Markov structures De…nition 4.9 Suppose B.1 holds and that for given τ 1 � m , τ 2 � 0 and for each y 2 supp ( Y t ) there exists a σ ( Y t � 1 , X t ) � measurable version of Z 1 f q t ( Y t � 1 , D t , Z t , u t ) < y g dF t ( u t j Y t � 1 , X t ) . d Then D t 6) S ( Y t � 1 , X t ) Y t ( direct non-causality � σ ( Y t � 1 , X t ) w . p . 1). d ) S ( Y t � 1 , X t ) Y t . Else D t 17/35

  18. Finite-order G-causality and Markov structures Theorem 4.10 d Let B.1 and B.2 hold. Then D t 6) S ( Y t � 1 , X t ) Y t , t = 1 , ..., T � τ 2 , if and only if Y t ? D t j Y t � 1 , X t , t = 1 , ..., T � τ 2 , i.e., D does not …nite-order G � cause Y w.r.t. X . 18/35

  19. 3. Granger causality and structural VARs 19/35

  20. G-causality and structural VARs � Special case of A.1: structural VARs (set k d = 0 ) � The DGP becomes � Y t � 1 , Z t , U t � Y t = q t . � Letting Y t � ( Y 0 1 , t , Y 0 2 , t ) 0 , � , Z t , U t � Y t � 1 , Y t � 1 Y 1 , t = q 1 , t 1 2 q 2 , t ( Y t � 1 , Y t � 1 , Z t , U t ) . = Y 2 , t 1 2 20/35

  21. G-causality and structural VARs Notation: Y 1 , t � 1 � ( Y 1 , t � ` , ..., Y 1 , t � 1 ) , Y 2 , t � 1 � ( Y 2 , t � ` , ..., Y 2 , t � 1 ) , Z t � ( Z t � m , ..., Z t ) , and X t � ( X t � τ 1 , ..., X t + τ 2 ) . Assumption C.1 A.1 holds, and for ` , m , 2 N , ` � 1 , suppose that Y t = q t ( Y t � 1 , Z t , U t ) , t = 1 , 2 , ... , such that, with 2 , t ) 0 and U t � ( U 0 Y t � ( Y 0 1 , t , Y 0 1 , t , U 0 2 , t ) 0 , Y 1 , t = q 1 , t ( Y t � 1 , Z t , U 1 , t ) Y 2 , t = q 2 , t ( Y t � 1 , Z t , U 2 , t ) . Assumption C.2 For ` and m as in C.1 and for τ 1 � m , τ 2 � 0, suppose that Y 2 , t � 1 ? U 1 t j Y 1 , t � 1 , X t , t = 1 , ..., T � τ 2 . 21/35

  22. G-causality and structural VARs De…nition 5.2 Suppose C.1 holds and that for given τ 1 � m , τ 2 � 0 and for each y 2 supp ( Y 1 , t ) there exists a σ ( Y 1 , t � 1 , X t ) � measurable version of Z 1 f q 1 , t ( Y t � 1 , Z t , u 1 , t ) < y g dF 1 , t ( u 1 , t j Y 1 , t � 1 , X t ) . d Then Y 2 , t � 1 6) S ( Y 1 , t � 1 , X t ) Y 1 , t ( direct non-causality � σ ( Y 1 , t � 1 , X t ) w . p . 1). d Else Y 2 , t � 1 ) S ( Y 1 , t � 1 , X t ) Y 1 , t . 22/35

  23. G-causality and structural VARs Theorem 5.3 d Let C.1 and C.2 hold. Then Y 2 , t � 1 6) S ( Y 1 , t � 1 , X t ) Y 1 , t , t = 1 , ..., T � τ 2 , if and only if Y 1 , t ? Y 2 , t � 1 j Y 1 , t � 1 , X t , t = 1 , ..., T � τ 2 , i.e., Y 2 does not …nite-order G � cause Y 1 w.r.t. X . 23/35

  24. 4. Testing …nite-order Granger causality 24/35

  25. Testing …nite-order Granger causality Test : Y t ? Q t j Y t � 1 , S t . � Test conditional mean independence with linear regression Y t = α 0 + Y t � 1 ρ 0 + Q 0 t β 0 + S 0 t β 1 + ε t . � Test conditional mean independence with neural nets Y t = α 0 + Y t � 1 ρ 0 + Q 0 t β 0 + S 0 t β 1 r ψ ( Y t � 1 γ 0 , j + S 0 ∑ + t γ j ) β j + 1 + ε t . j = 1 � Test conditional independence with nonlinear transforms α 0 + ψ y , 2 ( Y t � 1 ) ρ 0 + ψ q ( Q t ) 0 β 0 + S 0 ψ y , 1 ( Y t ) = t β 1 r ∑ ψ ( Y t � 1 γ 0 , j + S 0 + t γ j ) β j + 1 + η t . j = 1 25/35

  26. 5.Conditional exogeneity 26/35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend