google matrix analysis of directed networks
play

Google matrix analysis of directed networks Lecture 2 Klaus Frahm - PowerPoint PPT Presentation

Google matrix analysis of directed networks Lecture 2 Klaus Frahm Quantware MIPS Center Universit e Paul Sabatier Laboratoire de Physique Th eorique, UMR 5152, IRSAMC A. D. Chepelianskii, Y. H. Eom, L. Ermann, B. Georgeot, D.


  1. Google matrix analysis of directed networks Lecture 2 Klaus Frahm Quantware MIPS Center Universit´ e Paul Sabatier Laboratoire de Physique Th´ eorique, UMR 5152, IRSAMC A. D. Chepelianskii, Y. H. Eom, L. Ermann, B. Georgeot, D. Shepelyansky Networks and data mining Luchon, June 27 - July 11, 2015

  2. Contents Spectrum of Wikipedia . . . . . . . . . . . . . . . . . . . . 3 Eigenvectors of Wikipedia . . . . . . . . . . . . . . . . . . 4 Chirikov Standard map . . . . . . . . . . . . . . . . . . . . 9 Perron-Frobenius matrix for chaotic maps . . . . . . . . . . 10 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . 12 Complex density of states . . . . . . . . . . . . . . . . . . 13 Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . 14 Diffuson modes . . . . . . . . . . . . . . . . . . . . . . . . 19 Extrapolation of eigenvalues . . . . . . . . . . . . . . . . . 22 Strong chaos . . . . . . . . . . . . . . . . . . . . . . . . . 23 Separatrix map . . . . . . . . . . . . . . . . . . . . . . . . 26 Phase space localization . . . . . . . . . . . . . . . . . . . 27 References . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2

  3. Spectrum of Wikipedia Wikipedia 2009 : N = 3282257 nodes, N ℓ = 71012307 network links. spectrum of S ∗ , N s = 21198 spectrum of S , N s = 515 n A = 6000 for both cases 3

  4. Eigenvectors of Wikipedia left (right): PageRank (CheiRank) black: PageRank (CheiRank) at α = 0 . 85 grey: PageRank (CheiRank) at α = 1 − 10 − 8 red and green: first two core space eigenvectors blue and pink: two eigenvectors with large imaginary part in the eigenvalue 4

  5. Detail study of 200 selected eigenvectors with eigenvalues “close” to the unit circle: 5

  6. Power law decay of eigenvectors: | ψ i ( K i ) | ∼ K b K i ≥ 10 4 for i ϕ = arg( λ i ) 6

  7. Inverse participation ratio of eigenvectors: j | ψ i ( j ) | 2 ) 2 / � j | ψ i ( j ) | 4 ξ IPR = ( � ϕ = arg( λ i ) 7

  8. “Themes” of certain eigenvectors: math (function, geometry,surface, logic-circuit) England poetry Iceland aircraft Kuwait poetry Bangladesh football 0.5 biology song muscle-artery muscle-artery New Zeland DNA Austria Bible Poland muscle-artery music 0 -1 -0.5 0 0.5 1 Australia Canada protein Brazil China RNA skin war rail 0 Texas-Dallas-Houston -0.82 -0.8 -0.78 -0.74 -0.72 Gaafu Alif Atoll -0.76 Quantum Leap Language Switzerland Australia Australia England mathematics 0 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 8

  9. Chirikov Standard map 0.5 p n +1 = p n + k 0.4 2 π sin(2 π x n ) 0.3 p 0.2 x n +1 = x n + p n +1 0.1 k=0.7 0 0 0.2 0.4 0.6 0.8 1 x and p are taken modulo 1 x and the symmetry 0.5 ( x, p ) → (1 − x, 1 − p ) 0.4 allows to restrict: 0.3 p 0.2 x ∈ [0 , 1] and p ∈ [0 , 0 . 5] . 0.1 k=0.971635406 Transition to “global” chaos at 0 0 0.2 0.4 0.6 0.8 1 k c = 0 . 971635406 . x 9

  10. Perron-Frobenius matrix for chaotic maps A new variant of the Ulam Method to construct the Perron-Frobenius matrix for the case of a mixed phase space: • Subdivide x space in M cells and p space in M/ 2 cells with M being an (even) integer number. • Iterate (for a very long time: t ∼ 10 11 − 10 12 ) a classical trajectory and attribute a new number to each new cell which is entered. At the same time count the number of transitions from cell i to cell j ( ⇒ n ji ). • Calculate the N × N matrix n ji G ji = � l n li of dimension N ≈ M 2 / 4 and which is a (sparse) Perron Frobenius operator, i. e.: G ji ≥ 0 , � j G ji = 1 , G ji sparse. 10

  11. M = 10 , t = 10 6 ⇒ N = 35 0.5 0.4 3 0.3 4 p 0.2 6 2 0.1 0 1 5 0 0 0.2 0.4 0.6 0.8 1 x 14 12 10 8 6 4 2 0 0 1 2 3 4 5 6 distribution of number of non-zero density plot of matrix elements matrix elements per column (blue=min=0, green=medium, red=max) 11

  12. Eigenvalues for M = 10 , t = 10 6 and N = 35 1 0.5 0 -0.5 λ Phase space representation of the -1 -1 -0.5 0 0.5 1 eigenvector for λ 0 = 1 . for M = 280 , t = 10 12 and N = 16609 1 0.01 0.5 0 0 -0.5 λ -0.01 λ -1 -1 -0.5 0 0.5 1 0.97 0.98 0.99 1 12

  13. Complex density of states M=280 1.2 M=200 M=140 1 M=100 0.8 ρ ( λ ) 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 | λ | 13

  14. Eigenvectors λ 0 = 1 , M = 25 , N = 177 λ 0 = 1 , M = 35 , N = 332 λ 0 = 1 , M = 50 , N = 641 λ 0 = 1 , M = 70 , N = 1189 14

  15. λ 0 = 1 M = 140 N = 4417 λ 0 = 1 M = 280 N = 16609 15

  16. complex density of states: 0.3 M=280 M=400 M=560 M=800 0.2 M=1120 M=1600 ρ ( λ ) 0.1 0 0.6 0.8 1 | λ | 16

  17. λ 0 = 1 , M = 1600 , N = 494964 , n A = 3000 17

  18. λ 1 = 0 . 99980431 M = 800 N = 127282 n A = 2000 λ 2 = 0 . 99878108 M = 800 N = 127282 n A = 2000 18

  19. Diffuson modes 0.03 γ 1 j 2 γ j = − 2 ln( | λ j | ) 0.02 γ j γ j ≈ γ 1 j 2 0.01 for j ≤ 5 . 0 0 5 10 15 20 j What about eigenvectors for complex or real negative λ j ? 19

  20. λ 6 = − 0 . 49699831 + i 0 . 86089756 ≈ | λ 6 | e i 2 π/ 3 M = 800 N = 127282 n A = 2000 λ 19 = − 0 . 71213331 + i 0 . 67961609 ≈ | λ 19 | e i 2 π (3 / 8) M = 800 N = 127282 n A = 2000 20

  21. λ 8 = 0 . 00024596 + i 0 . 99239222 ≈ | λ 8 | e i 2 π/ 4 M = 800 N = 127282 n A = 2000 λ 13 = 0 . 30580631 + i 0 . 94120900 ≈ | λ 13 | e i 2 π/ 5 M = 800 N = 127282 n A = 2000 21

  22. Extrapolation of eigenvalues γ 1 ( M ) in the limit M → ∞ : 1 + C f ( M ) = D M 0.1 f(M) 1 + B M 0.01 M γ 1 (M) D = 0 . 245 2.36 M -1.30 0.001 B = 13 . 1 10 -4 100 1000 C = 258 M γ 6 ( M ) in the limit M → ∞ : 0.1 389 M -1.55 γ 6 (M) 0.01 200 400 800 1600 M γ 6 ( M ) ≈ 389 M − 1 . 55 for M ≥ 400 . 22

  23. Strong chaos at k = 7 , M = 140 , t = 10 11 and N = 9800 0.3 d+e M -1 1 a (1+b M -1 ) c 0.2 γ 1 (M) 0.5 0.1 γ class. =0.0866 0 0 0 0.005 0.01 -0.5 M -1 λ a ≈ 0 . 0857 ± 0 . 0036 , d ≈ 0 . 0994 -1 -1 -0.5 0 0.5 1 M →∞ γ 1 ( M ) > 0 lim 23

  24. λ 0 = 1 k = 7 M = 800 N = 319978 n A = 1500 λ 1 = 0 . 93874817 k = 7 M = 800 N = 319978 n A = 1500 24

  25. λ 2 = − 0 . 49264273 + i 0 . 78912368 k = 7 M = 800 N = 319978 n A = 1500 λ 8 = 0 . 87305253 k = 7 M = 800 N = 319978 n A = 1500 25

  26. Separatrix map p = p + sin(2 πx ) ¯ x = x + Λ ¯ 2 π ln( | ¯ p | ) (mod 1) Λ = Λ c = 3 . 1819316 26

  27. Phase space localization 27

  28. References 1. D. L. Shepelyansky Fractal Weyl law for quantum fractal eigenstates , Phys. Rev. E 77 , p.015202(R) (2008). 2. L. Ermann and D. L. Shepelyansky, Ulam method and fractal Weyl law for Perron-Frobenius operators , Eur. Phys. J. B 75 , 299 (2010). 3. K. M. Frahm and D. L. Shepelyansky, Ulam method for the Chirikov standard map , Eur. Phys. J. B 76 , 57 (2010). 4. L. Ermann, K. M. Frahm and D. L. Shepelyansky, Spectral properties of Google matrix of Wikipedia and other networks , Eur. Phys. J. B 86 , 193 (2013). 5. K. M. Frahm and D. L. Shepelyansky, Poincar´ e recurrences and Ulam method for the Chirikov standard map , Eur. Phys. J. B 86 , 322 (2013). 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend