good covering codes from algebraic curves
play

Good covering codes from algebraic curves Massimo Giulietti - PowerPoint PPT Presentation

Good covering codes from algebraic curves Massimo Giulietti University of Perugia (Italy) Special Semester on Applications of Algebra and Number Theory Workshop 2: Algebraic curves over finite fields Linz, 14 November 2013 covering codes ( F n


  1. applying Segre’s criterion (Segre, 1962) if there exists a point P ∈ C and a tangent ℓ of C at P such that ℓ counts once among the tangents of C at P , the intersection multiplicity of C and ℓ at P equals deg( C ), C has no linear components through P , then C is irreducible.

  2. applying Segre’s criterion (Segre, 1962) if there exists a point P ∈ C and a tangent ℓ of C at P such that ℓ counts once among the tangents of C at P , the intersection multiplicity of C and ℓ at P equals deg( C ), C has no linear components through P , then C is irreducible. a + ( X p − X + ¯ t )( Y p − Y + ¯ t ) 2 + F a , b ( X , Y ) := ( X p − X + ¯ t ) 2 ( Y p − Y + ¯ t ) − b (( X p − X + ¯ t ) 2 +( X p − X + ¯ t )( Y p − Y + ¯ t ) + ( Y p − Y + ¯ t ) 2 ) = 0

  3. applying Segre’s criterion (Segre, 1962) if there exists a point P ∈ C and a tangent ℓ of C at P such that ℓ counts once among the tangents of C at P , the intersection multiplicity of C and ℓ at P equals deg( C ), C has no linear components through P , then C is irreducible. a + ( X p − X + ¯ t )( Y p − Y + ¯ t ) 2 + F a , b ( X , Y ) := ( X p − X + ¯ t ) 2 ( Y p − Y + ¯ t ) − b (( X p − X + ¯ t ) 2 +( X p − X + ¯ t )( Y p − Y + ¯ t ) + ( Y p − Y + ¯ t ) 2 ) = 0 at P = X ∞ the tangents are ℓ : Y = β with β p − β + ¯ t = b

  4. applying Segre’s criterion (Segre, 1962) if there exists a point P ∈ C and a tangent ℓ of C at P such that ℓ counts once among the tangents of C at P , the intersection multiplicity of C and ℓ at P equals deg( C ), C has no linear components through P , then C is irreducible. a + ( X p − X + ¯ t )( Y p − Y + ¯ t ) 2 + F a , b ( X , Y ) := ( X p − X + ¯ t ) 2 ( Y p − Y + ¯ t ) − b (( X p − X + ¯ t ) 2 +( X p − X + ¯ t )( Y p − Y + ¯ t ) + ( Y p − Y + ¯ t ) 2 ) = 0 at P = X ∞ the tangents are ℓ : Y = β with β p − β + ¯ t = b F a , b ( X , β ) = a − b 3

  5. applying Segre’s criterion (Segre, 1962) if there exists a point P ∈ C and a tangent ℓ of C at P such that ℓ counts once among the tangents of C at P , the intersection multiplicity of C and ℓ at P equals deg( C ), C has no linear components through P , then C is irreducible. a + ( X p − X + ¯ t )( Y p − Y + ¯ t ) 2 + F a , b ( X , Y ) := ( X p − X + ¯ t ) 2 ( Y p − Y + ¯ t ) − b (( X p − X + ¯ t ) 2 +( X p − X + ¯ t )( Y p − Y + ¯ t ) + ( Y p − Y + ¯ t ) 2 ) = 0 at P = X ∞ the tangents are ℓ : Y = β with β p − β + ¯ t = b F a , b ( X , β ) = a − b 3 if P / ∈ X C P is irreducible of genus g ≤ 3 p 2 − 3 p + 1

  6. applying Segre’s criterion (Segre, 1962) if there exists a point P ∈ C and a tangent ℓ of C at P such that ℓ counts once among the tangents of C at P , the intersection multiplicity of C and ℓ at P equals deg( C ), C has no linear components through P , then C is irreducible. a + ( X p − X + ¯ t )( Y p − Y + ¯ t ) 2 + F a , b ( X , Y ) := ( X p − X + ¯ t ) 2 ( Y p − Y + ¯ t ) − b (( X p − X + ¯ t ) 2 +( X p − X + ¯ t )( Y p − Y + ¯ t ) + ( Y p − Y + ¯ t ) 2 ) = 0 at P = X ∞ the tangents are ℓ : Y = β with β p − β + ¯ t = b F a , b ( X , β ) = a − b 3 if P / ∈ X C P is irreducible of genus g ≤ 3 p 2 − 3 p + 1 C P has at least q + 1 − (6 p 2 − 6 p + 2) √ q points

  7. cuspidal case: Y = X 3 G is elementary abelian, isomorphic to ( F q , +)

  8. cuspidal case: Y = X 3 G is elementary abelian, isomorphic to ( F q , +) S = { ( L ( t ) + ¯ t , ( L ( t ) + ¯ t ) 3 ) | t ∈ F q } � �� � P t � L ( T ) = ( T − α ) , M < ( F q , +) , # M = m α ∈ M

  9. cuspidal case: Y = X 3 G is elementary abelian, isomorphic to ( F q , +) S = { ( L ( t ) + ¯ t , ( L ( t ) + ¯ t ) 3 ) | t ∈ F q } � �� � P t � L ( T ) = ( T − α ) , M < ( F q , +) , # M = m α ∈ M P = ( a , b ) is collinear with P x and P y if and only if t ) 2 + a + ( L ( x ) + ¯ t )( L ( y ) + ¯ F a , b ( x , y ) := ( L ( x ) + ¯ t ) 2 ( L ( y ) + ¯ t ) − b (( L ( x ) + ¯ t ) 2 +( L ( x ) + ¯ t )( L ( y ) + ¯ t ) + ( L ( y ) + ¯ t ) 2 ) = 0

  10. cuspidal case: Y = X 3 G is elementary abelian, isomorphic to ( F q , +) S = { ( L ( t ) + ¯ t , ( L ( t ) + ¯ t ) 3 ) | t ∈ F q } � �� � P t � L ( T ) = ( T − α ) , M < ( F q , +) , # M = m α ∈ M P = ( a , b ) is collinear with P x and P y if and only if t ) 2 + a + ( L ( x ) + ¯ t )( L ( y ) + ¯ F a , b ( x , y ) := ( L ( x ) + ¯ t ) 2 ( L ( y ) + ¯ t ) − b (( L ( x ) + ¯ t ) 2 +( L ( x ) + ¯ t )( L ( y ) + ¯ t ) + ( L ( y ) + ¯ t ) 2 ) = 0 if P / ∈ X C P is irreducible of genus g ≤ 3 m 2 − 3 m + 1

  11. cuspidal case: Y = X 3 G is elementary abelian, isomorphic to ( F q , +) S = { ( L ( t ) + ¯ t , ( L ( t ) + ¯ t ) 3 ) | t ∈ F q } � �� � P t � L ( T ) = ( T − α ) , M < ( F q , +) , # M = m α ∈ M P = ( a , b ) is collinear with P x and P y if and only if t ) 2 + a + ( L ( x ) + ¯ t )( L ( y ) + ¯ F a , b ( x , y ) := ( L ( x ) + ¯ t ) 2 ( L ( y ) + ¯ t ) − b (( L ( x ) + ¯ t ) 2 +( L ( x ) + ¯ t )( L ( y ) + ¯ t ) + ( L ( y ) + ¯ t ) 2 ) = 0 if P / ∈ X C P is irreducible of genus g ≤ 3 m 2 − 3 m + 1 C P has at least q + 1 − (6 m 2 − 6 m + 2) √ q points

  12. (Sz˝ onyi, 1985 - Anbar, Bartoli, G., Platoni, 2013) let P = ( a , b ) be a point in A 2 ( F q ) \ X ; if � m < 4 q / 36 then there is a secant of S passing through P .

  13. (Sz˝ onyi, 1985 - Anbar, Bartoli, G., Platoni, 2013) let P = ( a , b ) be a point in A 2 ( F q ) \ X ; if � m < 4 q / 36 then there is a secant of S passing through P . m is a power of p

  14. (Sz˝ onyi, 1985 - Anbar, Bartoli, G., Platoni, 2013) let P = ( a , b ) be a point in A 2 ( F q ) \ X ; if � m < 4 q / 36 then there is a secant of S passing through P . m is a power of p the points in X \ S need to be dealt with

  15. (Sz˝ onyi, 1985 - Anbar, Bartoli, G., Platoni, 2013) let P = ( a , b ) be a point in A 2 ( F q ) \ X ; if � m < 4 q / 36 then there is a secant of S passing through P . m is a power of p the points in X \ S need to be dealt with theorem � q / 36 , then there exists a complete cap in A 2 ( F q ) with size if m < 4 m + q m − 3

  16. (Sz˝ onyi, 1985 - Anbar, Bartoli, G., Platoni, 2013) let P = ( a , b ) be a point in A 2 ( F q ) \ X ; if � m < 4 q / 36 then there is a secant of S passing through P . m is a power of p the points in X \ S need to be dealt with theorem � q / 36 , then there exists a complete cap in A 2 ( F q ) with size if m < 4 m + q m − 3 ∼ p 1 / 4 · q 3 / 4

  17. nodal case: XY = ( X − 1) 3 G is isomorphic to ( F ∗ q , · ) v , ( v − 1) 3 � � G → F ∗ �→ v q v

  18. nodal case: XY = ( X − 1) 3 G is isomorphic to ( F ∗ q , · ) v , ( v − 1) 3 � � G → F ∗ �→ v q v the subgroup of index m ( m a divisor of q − 1): t m , ( t m − 1) 3 �� � � | t ∈ F ∗ K = q t m

  19. nodal case: XY = ( X − 1) 3 G is isomorphic to ( F ∗ q , · ) v , ( v − 1) 3 � � G → F ∗ �→ v q v the subgroup of index m ( m a divisor of q − 1): t m , ( t m − 1) 3 �� � � | t ∈ F ∗ K = q t m a coset: tt m − 1) 3 tt m , (¯ �� � � ¯ | t ∈ F ∗ S = ¯ q tt m

  20. nodal case: XY = ( X − 1) 3 G is isomorphic to ( F ∗ q , · ) v , ( v − 1) 3 � � G → F ∗ �→ v q v the subgroup of index m ( m a divisor of q − 1): t m , ( t m − 1) 3 �� � � | t ∈ F ∗ K = q t m a coset: g ( t ) f ( t ) � �� � tt m − 1) 3 (¯ � � � � ���� tt m , | t ∈ F ∗ ¯ S = ¯ q tt m � �� � P t

  21. nodal case: XY = ( X − 1) 3 G is isomorphic to ( F ∗ q , · ) v , ( v − 1) 3 � � G → F ∗ �→ v q v the subgroup of index m ( m a divisor of q − 1): t m , ( t m − 1) 3 �� � � | t ∈ F ∗ K = q t m a coset: g ( t ) f ( t ) � �� � tt m − 1) 3 (¯ � � � � ���� tt m , | t ∈ F ∗ ¯ S = ¯ q tt m � �� � P t the curve C P : t 3 X 2 m Y m + ¯ t 3 X m Y 2 m − 3¯ t 2 X m Y m + 1) a (¯ F a , b ( X , Y ) = t 2 X m Y m − ¯ t 4 X 2 m Y 2 m + 3¯ − b ¯ t 2 X m Y m tX m − ¯ tY m = 0 − ¯

  22. (Anbar-Bartoli-G.-Platoni, 2013) let P be a point in A 2 ( F q ) \ X ; if � 4 m < q / 36 then there is a secant of S passing through P

  23. (Anbar-Bartoli-G.-Platoni, 2013) let P be a point in A 2 ( F q ) \ X ; if � 4 m < q / 36 then there is a secant of S passing through P m is a divisor of q − 1

  24. (Anbar-Bartoli-G.-Platoni, 2013) let P be a point in A 2 ( F q ) \ X ; if � 4 m < q / 36 then there is a secant of S passing through P m is a divisor of q − 1 some points from X \ S need to be added to S

  25. (Anbar-Bartoli-G.-Platoni, 2013) let P be a point in A 2 ( F q ) \ X ; if � 4 m < q / 36 then there is a secant of S passing through P m is a divisor of q − 1 some points from X \ S need to be added to S theorem � q / 36 , and in addition ( m , q − 1 if m is a divisor of q − 1 with m < 4 m ) = 1 , then there exists a complete cap in A 2 ( F q ) with size m + q − 1 − 3 m

  26. (Anbar-Bartoli-G.-Platoni, 2013) let P be a point in A 2 ( F q ) \ X ; if � 4 m < q / 36 then there is a secant of S passing through P m is a divisor of q − 1 some points from X \ S need to be added to S theorem � q / 36 , and in addition ( m , q − 1 if m is a divisor of q − 1 with m < 4 m ) = 1 , then there exists a complete cap in A 2 ( F q ) with size m + q − 1 ∼ q 3 / 4 − 3 m

  27. isolated double point case: Y ( X 2 − β ) = 1 G cyclic of order q + 1

  28. isolated double point case: Y ( X 2 − β ) = 1 G cyclic of order q + 1 (Anbar-Bartoli-G.-Platoni, 2013) � q / 36, and in addition ( m , q +1 if m is a divisor of q + 1 with m < 4 m ) = 1, then there exists a complete cap in A 2 ( F q ) with size at most m + q + 1 m

  29. isolated double point case: Y ( X 2 − β ) = 1 G cyclic of order q + 1 (Anbar-Bartoli-G.-Platoni, 2013) � q / 36, and in addition ( m , q +1 if m is a divisor of q + 1 with m < 4 m ) = 1, then there exists a complete cap in A 2 ( F q ) with size at most m + q + 1 ∼ q 3 / 4 m

  30. elliptic case: Y 2 = X 3 + AX + B if n ∈ [ q + 1 − 2 √ q , q + 1 + 2 √ q ] n �≡ q + 1 (mod p ) there exists an elliptic cubic curve X over F q with # G = n

  31. elliptic case: Y 2 = X 3 + AX + B if n ∈ [ q + 1 − 2 √ q , q + 1 + 2 √ q ] n �≡ q + 1 (mod p ) there exists an elliptic cubic curve X over F q with # G = n (Voloch, 1988) if p does not divide # G − 1, then G can be assumed to be cyclic

  32. elliptic case: Y 2 = X 3 + AX + B if n ∈ [ q + 1 − 2 √ q , q + 1 + 2 √ q ] n �≡ q + 1 (mod p ) there exists an elliptic cubic curve X over F q with # G = n (Voloch, 1988) if p does not divide # G − 1, then G can be assumed to be cyclic problem: no polynomial or rational parametrization of the points of S is possible

  33. elliptic case: Y 2 = X 3 + AX + B if n ∈ [ q + 1 − 2 √ q , q + 1 + 2 √ q ] n �≡ q + 1 (mod p ) there exists an elliptic cubic curve X over F q with # G = n (Voloch, 1988) if p does not divide # G − 1, then G can be assumed to be cyclic problem: no polynomial or rational parametrization of the points of S is possible Voloch’s solution (1990): implicit description of C P

  34. elliptic case: Y 2 = X 3 + AX + B if n ∈ [ q + 1 − 2 √ q , q + 1 + 2 √ q ] n �≡ q + 1 (mod p ) there exists an elliptic cubic curve X over F q with # G = n (Voloch, 1988) if p does not divide # G − 1, then G can be assumed to be cyclic problem: no polynomial or rational parametrization of the points of S is possible Voloch’s solution (1990): implicit description of C P Voloch’s result would provide complete caps of size ∼ q 3 / 4 for every q large enough

  35. elliptic case: Y 2 = X 3 + AX + B if n ∈ [ q + 1 − 2 √ q , q + 1 + 2 √ q ] n �≡ q + 1 (mod p ) there exists an elliptic cubic curve X over F q with # G = n (Voloch, 1988) if p does not divide # G − 1, then G can be assumed to be cyclic problem: no polynomial or rational parametrization of the points of S is possible Voloch’s solution (1990): implicit description of C P Voloch’s result would provide complete caps of size ∼ q 3 / 4 for every q large enough ?

  36. elliptic case G cyclic m | q − 1 m prime

  37. elliptic case G cyclic m | q − 1 m prime Tate-Lichtenbaum Pairing F ∗ q / ( F ∗ q ) m < · , · > : G [ m ] × G / K →

  38. elliptic case G cyclic m | q − 1 m prime Tate-Lichtenbaum Pairing F ∗ q / ( F ∗ q ) m < · , · > : G [ m ] × G / K → if m 2 does not divide # G , then for some T in G [ m ] F ∗ q / ( F ∗ q ) m < T , · > : G / K → is an isomorphism such that K ⊕ Q �→ [ α T ( Q )] where α T is a rational function on X

  39. elliptic case G cyclic m | q − 1 m prime Tate-Lichtenbaum Pairing F ∗ q / ( F ∗ q ) m < · , · > : G [ m ] × G / K → if m 2 does not divide # G , then for some T in G [ m ] F ∗ q / ( F ∗ q ) m < T , · > : G / K → is an isomorphism such that K ⊕ Q �→ [ α T ( Q )] where α T is a rational function on X S = { R ∈ G | α T ( R ) = dt m for some t ∈ F q }

  40. elliptic case S = { R ∈ X | α ( R ) = dt m for some t ∈ F q }

  41. elliptic case S = { R ∈ X | α ( R ) = dt m for some t ∈ F q }

  42. elliptic case S = { R ∈ X | α ( R ) = dt m for some t ∈ F q } P = ( a , b ) collinear with two points ( x , y ) , ( u , v ) ∈ S if there exist x , y , u , v , t , z ∈ F q with

  43. b b b elliptic case S = { R ∈ X | α ( R ) = dt m for some t ∈ F q } P = ( a , b ) collinear with two points ( x , y ) , ( u , v ) ∈ S if there exist x , y , u , v , t , z ∈ F q with ( a , b )  y 2 = x 3 + Ax + B ( x , y )   v 2 = u 3 + Au + B        ( u , v )         

  44. b b b elliptic case S = { R ∈ X | α ( R ) = dt m for some t ∈ F q } P = ( a , b ) collinear with two points ( x , y ) , ( u , v ) ∈ S if there exist x , y , u , v , t , z ∈ F q with ( a , b )  y 2 = x 3 + Ax + B ( x , y )   v 2 = u 3 + Au + B      α ( x , y ) = dt m   α ( u , v ) = dz m ( u , v )         

  45. b b b elliptic case S = { R ∈ X | α ( R ) = dt m for some t ∈ F q } P = ( a , b ) collinear with two points ( x , y ) , ( u , v ) ∈ S if there exist x , y , u , v , t , z ∈ F q with ( a , b )  y 2 = x 3 + Ax + B ( x , y )   v 2 = u 3 + Au + B      α ( x , y ) = dt m   α ( u , v ) = dz m ( u , v )    1 a b     = 0  det 1 x y      1 u v

  46. b b b elliptic case S = { R ∈ X | α ( R ) = dt m for some t ∈ F q } P = ( a , b ) collinear with two points ( x , y ) , ( u , v ) ∈ S if there exist x , y , u , v , t , z ∈ F q with ( a , b )  y 2 = x 3 + Ax + B ( x , y )   v 2 = u 3 + Au + B      α ( x , y ) = dt m   α ( u , v ) = dz m C P : ( u , v )    1 a b     = 0  det 1 x y      1 u v

  47. (Anbar-G., 2012) if A � = 0, then C P is irreducible or admits an irreducible F q -rational component

  48. (Anbar-G., 2012) if A � = 0, then C P is irreducible or admits an irreducible F q -rational component � if m is a prime divisor of q − 1 with m < 4 q / 64, then there exists a complete cap in A 2 ( F q ) with size at most m + ⌊ q − 2 √ q + 1 ⌋ + 31 m

  49. (Anbar-G., 2012) if A � = 0, then C P is irreducible or admits an irreducible F q -rational component � if m is a prime divisor of q − 1 with m < 4 q / 64, then there exists a complete cap in A 2 ( F q ) with size at most m + ⌊ q − 2 √ q + 1 ∼ q 3 / 4 ⌋ + 31 m

  50. ℓ ( r , q ) 2 , 4

  51. in geometrical terms... proposition ℓ ( r , q ) 2 , 4 = minimum size of a complete cap in P r − 1 ( F q )

  52. in geometrical terms... proposition ℓ ( r , q ) 2 , 4 = minimum size of a complete cap in P r − 1 ( F q ) trivial lower bound √ 2 q ( N − 1) / 2 in P N ( F q ) # S ≥

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend