crystallographic number systems
play

Crystallographic number systems Beno t Loridant University of - PowerPoint PPT Presentation

Crystallographic number systems Beno t Loridant University of Leoben, Austria Prag - May, 2008 Supported by FWF, Project S9610. Introduction. Purpose: dynamical systems associated to fractal tiles providing crystallographic tilings.


  1. Crystallographic number systems Benoˆ ıt Loridant University of Leoben, Austria Prag - May, 2008 Supported by FWF, Project S9610.

  2. Introduction. Purpose: dynamical systems associated to fractal tiles providing crystallographic tilings.

  3. Introduction. Purpose: dynamical systems associated to fractal tiles providing crystallographic tilings. Questions: attractor of the dynamical systems, topology of the tiles.

  4. Introduction. Purpose: dynamical systems associated to fractal tiles providing crystallographic tilings. Questions: attractor of the dynamical systems, topology of the tiles. Results: correspondances with canonical number systems.

  5. Crystallographic groups. Γ ≤ Isom ( R n ) is a crystallographic group if Γ ≃ Z n ⋉ { id , r 2 , . . . , r d } , where r 2 , . . . , r d are isometries of finite order.

  6. Crystallographic groups. Γ ≤ Isom ( R n ) is a crystallographic group if Γ ≃ Z n ⋉ { id , r 2 , . . . , r d } , where r 2 , . . . , r d are isometries of finite order. n = 2: 17 crystallographic groups. Example : a ( x , y ) = ( x +1 , y ) , b ( x , y ) = ( x , y +1) , c ( x , y ) = ( − x , − y ) . A p 2-group is isomorphic to the group generated by a , b , c .

  7. Crystallographic reptiles (Gelbrich, 1994). Let Γ crystallographic group,

  8. Crystallographic reptiles (Gelbrich, 1994). Let Γ crystallographic group, g expanding affine mapping such that g Γ g − 1 ≤ Γ,

  9. Crystallographic reptiles (Gelbrich, 1994). Let Γ crystallographic group, g expanding affine mapping such that g Γ g − 1 ≤ Γ, D ⊂ Γ finite complete set of right coset representatives of Γ / g Γ g − 1 : Γ = � δ ∈D g Γ g − 1 δ (disjoint).

  10. Crystallographic reptiles (Gelbrich, 1994). Let Γ crystallographic group, g expanding affine mapping such that g Γ g − 1 ≤ Γ, D ⊂ Γ finite complete set of right coset representatives of Γ / g Γ g − 1 : Γ = � δ ∈D g Γ g − 1 δ (disjoint). A crystile with respect to (Γ , g , D ) is a compact set T = T o ⊂ R n , such that

  11. Crystallographic reptiles (Gelbrich, 1994). Let Γ crystallographic group, g expanding affine mapping such that g Γ g − 1 ≤ Γ, D ⊂ Γ finite complete set of right coset representatives of Γ / g Γ g − 1 : Γ = � δ ∈D g Γ g − 1 δ (disjoint). A crystile with respect to (Γ , g , D ) is a compact set T = T o ⊂ R n , such that � R n = γ ( T ) (1) γ ∈ Γ without overlapping ( tiling property )

  12. Crystallographic reptiles (Gelbrich, 1994). Let Γ crystallographic group, g expanding affine mapping such that g Γ g − 1 ≤ Γ, D ⊂ Γ finite complete set of right coset representatives of Γ / g Γ g − 1 : Γ = � δ ∈D g Γ g − 1 δ (disjoint). A crystile with respect to (Γ , g , D ) is a compact set T = T o ⊂ R n , such that � R n = γ ( T ) (1) γ ∈ Γ without overlapping ( tiling property ) and � g ( T ) = δ ( T ) (2) δ ∈D ( replication property ).

  13. Example of a p 2 -crystile. � 0 � 1 � � x � � − 3 g ( x , y ) = + . 1 − 1 0 y

  14. Example of a p 2 -crystile. � 0 � 1 � � x � � − 3 g ( x , y ) = + . 1 − 1 0 y Figure: T defined by g ( T ) = T ∪ a ( T ) ∪ c ( T ) and its neighbors.

  15. Associated dynamical system. (Γ , g , D ) crystile data with id ∈ D . Γ = g Γ g − 1 D .

  16. Associated dynamical system. (Γ , g , D ) crystile data with id ∈ D . Γ = g Γ g − 1 D . Define Φ : Γ → Γ Φ( γ ) such that γ = g Φ( γ ) g − 1 δ. γ �→

  17. Associated dynamical system. (Γ , g , D ) crystile data with id ∈ D . Γ = g Γ g − 1 D . Define Φ : Γ → Γ Φ( γ ) such that γ = g Φ( γ ) g − 1 δ. γ �→ δ ∈ D and Φ( γ ) are uniquely defined by γ .

  18. Associated dynamical system. (Γ , g , D ) crystile data with id ∈ D . Γ = g Γ g − 1 D . Define Φ : Γ → Γ Φ( γ ) such that γ = g Φ( γ ) g − 1 δ. γ �→ δ ∈ D and Φ( γ ) are uniquely defined by γ . Iterating Φ, one gets g γ 1 g − 1 δ 0 γ = g g γ 2 g − 1 δ 1 g − 1 δ 0 = = . . . g m Φ m ( γ ) g − 1 δ m − 1 . . . g − 1 δ 1 g − 1 δ 0 = with digits δ 0 , . . . , δ m − 1 ∈ D .

  19. Crystallographic number system. Definition. (Γ , g , D ) is a crystallographic number system if for every γ ∈ Γ, Φ m ( γ ) = id for some m ∈ N . One then writes γ = ( id ∞ , δ m − 1 , . . . , δ 0 ) g or just ( δ m − 1 , . . . , δ 0 ) g .

  20. Crystallographic number system. Definition. (Γ , g , D ) is a crystallographic number system if for every γ ∈ Γ, Φ m ( γ ) = id for some m ∈ N . One then writes γ = ( id ∞ , δ m − 1 , . . . , δ 0 ) g or just ( δ m − 1 , . . . , δ 0 ) g . Example. Consider Γ ≃ Z n and g ( x ) = M x with M expanding integer matrix.

  21. Crystallographic number system. Definition. (Γ , g , D ) is a crystallographic number system if for every γ ∈ Γ, Φ m ( γ ) = id for some m ∈ N . One then writes γ = ( id ∞ , δ m − 1 , . . . , δ 0 ) g or just ( δ m − 1 , . . . , δ 0 ) g . Example. Consider Γ ≃ Z n and g ( x ) = M x with M expanding integer matrix. Then g Γ g − 1 ≤ Γ means M Z n ≤ Z n .

  22. Crystallographic number system. Definition. (Γ , g , D ) is a crystallographic number system if for every γ ∈ Γ, Φ m ( γ ) = id for some m ∈ N . One then writes γ = ( id ∞ , δ m − 1 , . . . , δ 0 ) g or just ( δ m − 1 , . . . , δ 0 ) g . Example. Consider Γ ≃ Z n and g ( x ) = M x with M expanding integer matrix. Then g Γ g − 1 ≤ Γ means M Z n ≤ Z n . The digit set has the form � p i � � � D = x �→ x + ; 1 ≤ i ≤ d . q i

  23. Crystallographic number system. Definition. (Γ , g , D ) is a crystallographic number system if for every γ ∈ Γ, Φ m ( γ ) = id for some m ∈ N . One then writes γ = ( id ∞ , δ m − 1 , . . . , δ 0 ) g or just ( δ m − 1 , . . . , δ 0 ) g . Example. Consider Γ ≃ Z n and g ( x ) = M x with M expanding integer matrix. Then g Γ g − 1 ≤ Γ means M Z n ≤ Z n . The digit set has the form � p i � � � D = x �→ x + ; 1 ≤ i ≤ d . q i (Γ , g , D ) is a crystallographic number system iff �� p i � � �� M , N := ; 1 ≤ i ≤ d is a number system . q i

  24. Characterization of Crystems : counting automaton. (Γ , g , D ) given.

  25. Characterization of Crystems : counting automaton. (Γ , g , D ) given. States: γ ∈ Γ. δ | δ ′ → γ ′ iff δγ = g γ ′ g − 1 δ ′ . − − Edges: γ

  26. Characterization of Crystems : counting automaton. (Γ , g , D ) given. States: γ ∈ Γ. δ | δ ′ → γ ′ iff δγ = g γ ′ g − 1 δ ′ . − − Edges: γ id | δ ′ Note that γ − − → Φ( γ ).

  27. Characterization of Crystems : counting automaton. (Γ , g , D ) given. States: γ ∈ Γ. δ | δ ′ → γ ′ iff δγ = g γ ′ g − 1 δ ′ . − − Edges: γ id | δ ′ Note that γ − − → Φ( γ ). (Γ , g , D ) is a crystem iff for every γ there is a finite walk id | δ 0 id | δ 1 id | δ m − 1 − − − → γ 1 − − − → . . . − − − − → id γ in the counting automaton.

  28. Characterization of Crystems : counting automaton. (Γ , g , D ) given. States: γ ∈ Γ. δ | δ ′ → γ ′ iff δγ = g γ ′ g − 1 δ ′ . − − Edges: γ id | δ ′ Note that γ − − → Φ( γ ). (Γ , g , D ) is a crystem iff for every γ there is a finite walk id | δ 0 id | δ 1 id | δ m − 1 − − − → γ 1 − − − → . . . − − − − → id γ in the counting automaton. If γ = ( id ∞ , δ m − 1 , . . . , δ 0 ) g , then γγ 0 = g m γ ′ g − m ( δ ′ m − 1 , . . . , δ ′ 0 ) g where δ m − 1 | δ ′ δ 0 | δ ′ δ 1 | δ ′ m − 1 → γ ′ . 0 1 γ 0 − − − → γ 1 − − − → . . . − − − − − −

  29. Example of p 2-crystem (Γ = < a , b , c > ). � � x � � � � 0 1 0 g ( x , y ) = + . − 1 − 3 0 y 2

  30. Example of p 2-crystem (Γ = < a , b , c > ). � � x � � � � 0 1 0 g ( x , y ) = + . − 1 − 3 0 y 2 Figure: T : g ( T ) = T ∪ b ( T ) ∪ c ( T ) and counting subautomaton.

  31. Characterization by a subautomaton. (Γ , g , D ) is a crystem iff for every γ there is a finite walk id | δ 0 id | δ 1 id | δ m − 1 γ − − − → γ 1 − − − → . . . − − − − → id (3) in the counting automaton.

  32. Characterization by a subautomaton. (Γ , g , D ) is a crystem iff for every γ there is a finite walk id | δ 0 id | δ 1 id | δ m − 1 γ − − − → γ 1 − − − → . . . − − − − → id (3) in the counting automaton. Suppose Property (3) is fulfilled by the states of a stable subautomaton that generates Γ. Then (Γ , g , D ) is a crystem.

  33. Example of p 2-non-crystem (Γ = < a , b , c > ). � � x � � − 1 0 g ( x , y ) = . − 3 − 1 y

  34. Example of p 2-non-crystem (Γ = < a , b , c > ). � � x � � − 1 0 g ( x , y ) = . − 3 − 1 y Figure: T : g ( T ) = T ∪ b ( T ) ∪ a − 1 c ( T ) and counting subautomaton.

  35. Example of p 3-crystem √ Γ = < a , b , r > , b ( x , y ) = ( x + 1 2 ) , r = rot (0; 2 π 3 2 , y + 3 )). √ � � x � � 0 3 √ g ( x , y ) = . − 3 0 y

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend