hyperbolic ornaments
play

Hyperbolic Ornaments Drawing in Non-Euclidean Crystallographic - PowerPoint PPT Presentation

Basics Program Hyperbolic Ornaments Drawing in Non-Euclidean Crystallographic Groups Martin von Gagern joint work with Jrgen Richter-Gebert Technische Universitt Mnchen Second International Congress on Mathematical Software, September 1


  1. Basics Program Hyperbolic Ornaments Drawing in Non-Euclidean Crystallographic Groups Martin von Gagern joint work with Jürgen Richter-Gebert Technische Universität München Second International Congress on Mathematical Software, September 1 2006 Martin von Gagern Hyperbolic Ornaments

  2. Basics Program Educational Value Martin von Gagern Hyperbolic Ornaments

  3. Basics Program Escher Martin von Gagern Hyperbolic Ornaments

  4. Basics Program Hyperbolic Escher Martin von Gagern Hyperbolic Ornaments

  5. Basics Program Hyperbolic Escher Martin von Gagern Hyperbolic Ornaments

  6. Basics Symmetries Program Hyperbolic Geometry Outline 1 Basics Symmetries Hyperbolic Geometry Program 2 Intuitive Input Group Calculations Fast Drawing Martin von Gagern Hyperbolic Ornaments

  7. Basics Symmetries Program Hyperbolic Geometry Rigid Motions Reflection Rotation Translation Glide Reflection Definition (Rigid Motion) Rigid Motions ( = Isometries) are the length-preserving mappings of the plane onto itself. Martin von Gagern Hyperbolic Ornaments

  8. Basics Symmetries Program Hyperbolic Geometry Rigid Motions Reflection Rotation Translation Glide Reflection Definition (Rigid Motion) Rigid Motions ( = Isometries) are the length-preserving mappings of the plane onto itself. Martin von Gagern Hyperbolic Ornaments

  9. Basics Symmetries Program Hyperbolic Geometry Groups of Rigid Motions • Group E ( 2 ) : all euclidean planar isometries • Discrete Subgroups Definition (Discreteness) A group G is discrete if around every point P of the plane there is a neighborhood devoid of any images of P under the group operations. The discrete groups of rigid motions in the euclidean plane: • 17 Wallpaper Groups • 7 Frieze Groups • 2 kinds of Rosette Groups Martin von Gagern Hyperbolic Ornaments

  10. Basics Symmetries Program Hyperbolic Geometry Groups of Rigid Motions • Group E ( 2 ) : all euclidean planar isometries • Discrete Subgroups Definition (Discreteness) A group G is discrete if around every point P of the plane there is a neighborhood devoid of any images of P under the group operations. The discrete groups of rigid motions in the euclidean plane: • 17 Wallpaper Groups • 7 Frieze Groups • 2 kinds of Rosette Groups Martin von Gagern Hyperbolic Ornaments

  11. Basics Symmetries Program Hyperbolic Geometry Groups of Rigid Motions • Group E ( 2 ) : all euclidean planar isometries • Discrete Subgroups Definition (Discreteness) A group G is discrete if around every point P of the plane there is a neighborhood devoid of any images of P under the group operations. The discrete groups of rigid motions in the euclidean plane: • 17 Wallpaper Groups • 7 Frieze Groups • 2 kinds of Rosette Groups Martin von Gagern Hyperbolic Ornaments

  12. Basics Symmetries Program Hyperbolic Geometry Anatomy of the Hyperbolic Plane Definition (Hyperbolic Axiom of Parallels) Given a point P outside a line ℓ there exist at least two lines through P that do not intersect ℓ . • Many facts of euclidean geometry don’t rely on the Axiom of Parallels and are true in hyperbolic geometry as well. • The sum of angles in a triangle is less than π . • Lengths are absolute, scaling is not an automorphism. • Geometry of constant negative curvature. Martin von Gagern Hyperbolic Ornaments

  13. Basics Symmetries Program Hyperbolic Geometry Poincaré Disc Model • hyperbolic points: inside of the unit circle • hyperbolic lines: lines and circles perpendicular to the unit circle • hyperbolic angle: identical to euclidean angle • hyperbolic distance: changes with distance from center Martin von Gagern Hyperbolic Ornaments

  14. Basics Symmetries Program Hyperbolic Geometry Poincaré Disc Model • hyperbolic points: inside of the unit circle • hyperbolic lines: lines and circles perpendicular to the unit circle • hyperbolic angle: identical to euclidean angle • hyperbolic distance: changes with distance from center Martin von Gagern Hyperbolic Ornaments

  15. Basics Symmetries Program Hyperbolic Geometry Poincaré Disc Model • hyperbolic points: inside of the unit circle • hyperbolic lines: lines and circles perpendicular to the unit circle • hyperbolic angle: identical to euclidean angle • hyperbolic distance: changes with distance from center Martin von Gagern Hyperbolic Ornaments

  16. Basics Symmetries Program Hyperbolic Geometry Poincaré Disc Model • hyperbolic points: inside of the unit circle • hyperbolic lines: lines and circles perpendicular to the unit circle • hyperbolic angle: identical to euclidean angle • hyperbolic distance: changes with distance from center Martin von Gagern Hyperbolic Ornaments

  17. Basics Symmetries Program Hyperbolic Geometry Hyperbolic Rigid Motions Reflection Rotation Translation Glide Reflection N.B.: translations now have only a single fixed line. Martin von Gagern Hyperbolic Ornaments

  18. Intuitive Input Basics Group Calculations Program Fast Drawing Outline 1 Basics Symmetries Hyperbolic Geometry Program 2 Intuitive Input Group Calculations Fast Drawing Martin von Gagern Hyperbolic Ornaments

  19. Intuitive Input Basics Group Calculations Program Fast Drawing Tilings by regular Polygons • Square • Triangular • Hexagonal Martin von Gagern Hyperbolic Ornaments

  20. Intuitive Input Basics Group Calculations Program Fast Drawing Tilings by regular Polygons • Square • Triangular • Hexagonal Martin von Gagern Hyperbolic Ornaments

  21. Intuitive Input Basics Group Calculations Program Fast Drawing From regular Polygons to Triangles regular heptagons △ ( 2 , 3 , 7 ) regular triangles angles 2 π angles π 2 , π 3 , π angles 2 π 3 7 7 Martin von Gagern Hyperbolic Ornaments

  22. Intuitive Input Basics Group Calculations Program Fast Drawing From regular Polygons to Triangles regular heptagons △ ( 2 , 3 , 7 ) regular triangles angles 2 π angles π 2 , π 3 , π angles 2 π 3 7 7 Martin von Gagern Hyperbolic Ornaments

  23. Intuitive Input Basics Group Calculations Program Fast Drawing From regular Polygons to Triangles regular heptagons △ ( 2 , 3 , 7 ) regular triangles angles 2 π angles π 2 , π 3 , π angles 2 π 3 7 7 Martin von Gagern Hyperbolic Ornaments

  24. Intuitive Input Basics Group Calculations Program Fast Drawing General Tesselations △ ( 4 , 6 , 7 ) △ ( 2 , 5 , ∞ ) Martin von Gagern Hyperbolic Ornaments

  25. Intuitive Input Basics Group Calculations Program Fast Drawing Why All Angles are Different • △ ( n , n , n ) ⊂ △ ( 2, 3, 2 n ) • △ ( n , 2 n , 2 n ) ⊂ △ ( 2, 4, 2 n ) • △ ( n , m , m ) ⊂ △ ( 2, m , 2 n ) △ ( k , m , n ) : π k + π m + π n < π Martin von Gagern Hyperbolic Ornaments

  26. Intuitive Input Basics Group Calculations Program Fast Drawing Why All Angles are Different • △ ( n , n , n ) ⊂ △ ( 2, 3, 2 n ) • △ ( n , 2 n , 2 n ) ⊂ △ ( 2, 4, 2 n ) • △ ( n , m , m ) ⊂ △ ( 2, m , 2 n ) △ ( k , m , n ) : π k + π m + π n < π Martin von Gagern Hyperbolic Ornaments

  27. Intuitive Input Basics Group Calculations Program Fast Drawing Why All Angles are Different • △ ( n , n , n ) ⊂ △ ( 2, 3, 2 n ) • △ ( n , 2 n , 2 n ) ⊂ △ ( 2, 4, 2 n ) • △ ( n , m , m ) ⊂ △ ( 2, m , 2 n ) △ ( k , m , n ) : π k + π m + π n < π Martin von Gagern Hyperbolic Ornaments

  28. Intuitive Input Basics Group Calculations Program Fast Drawing Algebraic Calculations General triangle reflection group △ ( k , m , n ) • Coxeter group (finitely represented group for GAP) a , b , c | a 2 = 1 , b 2 = 1 , c 2 = 1 , ( ab ) k = 1 , ( ac ) m = 1 , ( bc ) n = 1 � � • Subgroups with finite index are non-euclidean crystallographic (N.E.C.) groups • Orientation preserving subgroups are Fuchsian Martin von Gagern Hyperbolic Ornaments

  29. Intuitive Input Basics Group Calculations Program Fast Drawing Algebraic Calculations General triangle reflection group △ ( k , m , n ) • Coxeter group (finitely represented group for GAP) a , b , c | a 2 = 1 , b 2 = 1 , c 2 = 1 , ( ab ) k = 1 , ( ac ) m = 1 , ( bc ) n = 1 � � • Subgroups with finite index are non-euclidean crystallographic (N.E.C.) groups • Orientation preserving subgroups are Fuchsian Martin von Gagern Hyperbolic Ornaments

  30. Intuitive Input Basics Group Calculations Program Fast Drawing Algebraic Calculations General triangle reflection group △ ( k , m , n ) • Coxeter group (finitely represented group for GAP) a , b , c | a 2 = 1 , b 2 = 1 , c 2 = 1 , ( ab ) k = 1 , ( ac ) m = 1 , ( bc ) n = 1 � � • Subgroups with finite index are non-euclidean crystallographic (N.E.C.) groups • Orientation preserving subgroups are Fuchsian Martin von Gagern Hyperbolic Ornaments

  31. Intuitive Input Basics Group Calculations Program Fast Drawing Algebraic Calculations General triangle reflection group △ ( k , m , n ) • Coxeter group (finitely represented group for GAP) a , b , c | a 2 = 1 , b 2 = 1 , c 2 = 1 , ( ab ) k = 1 , ( ac ) m = 1 , ( bc ) n = 1 � � • Subgroups with finite index are non-euclidean crystallographic (N.E.C.) groups • Orientation preserving subgroups are Fuchsian Martin von Gagern Hyperbolic Ornaments

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend