globally polarized quark gluon plasma in non central a a
play

Globally Polarized Quark Gluon Plasma in Non-Central A+A Collisions - PowerPoint PPT Presentation

The 9th Workshop on Hadron physics in China and Opportunities Worldwide Globally Polarized Quark Gluon Plasma in Non-Central A+A Collisions at High Energies (Liang Zuo-tang) (School of physics, Shandong


  1. The 9th Workshop on Hadron physics in China and Opportunities Worldwide Globally Polarized Quark Gluon Plasma in Non-Central A+A Collisions at High Energies 梁作堂 (Liang Zuo-tang) 山东大学物理学院 (School of physics, Shandong University) 201 7年 7 月 25 日,南京 July 25, 2017, NanJing 1 Hadron2017 2017 年 7 月 24-28 日,南京

  2. The 9th Workshop on Hadron physics in China and Opportunities Worldwide STAR Collaboration, arXiv:1701.06657[nucl-exp] to appear in Nature (2017). 2 Hadron2017 2017 年 7 月 24-28 日,南京

  3. Outline Ø Introduction Ø Orbital angular momentum of QGP in non-central AA collisions Ø Global polarization of QGP in non-central AA collisions Ø Direct consequences: Hyperon polarization & vector meson spin alignment Ø Measurements and results Ø Further discussions and developments Ø Summary and out look ZTL & Xin-Nian Wang, PRL 94 (2005), Phys. Lett. B629 (2005); Jian-Hua Gao, Shou-Wan Chen, Wei-Tian Deng, ZTL, Qun Wang, Xin-Nian Wang, PRC77 (2008). ZTL, plenary talk at the 19th Inter. Conf. on Ultra-Relativistic Nucleus-Nucleus Collisions (QM2006). 3 Hadron2017 2017 年 7 月 24-28 日,南京

  4. Introduction Spin effects usually provide us with useful information and often surprises. Nuclear physics: Nuclear shell model and L-S-coupling Examples: Condensed matter physics: Spintronics High energy physics: proton’s spin crisis Much more …....... Ø Since 1970s: Transverse polarization of hyperon in unpolarized pp or pA collisions; Ø Since 1970s: Single-spin left-right asymmetry in inclusive production p ( ↑ ) + p → π + X Ø Since 1970s: Spin analyzing power in pp elastic scattering p ( ↑ ) + p → p + p p + p / A → Λ + X p ( ↑ ) + p → p + p Hadron2017 2017 年 7 月 24-28 日,南京 4

  5. Introduction Hadron2017 2017 年 7 月 24-28 日,南京 5

  6. Introduction Nuclear dependence two important aspects in QCD physics Spin dependence heavy ion heavy ion collider physics RHIC spin physics in heavy ion collisions ? polarized pp spin physics collider Do spin physics in AA collisions without polarizing A ? Hadron2017 2017 年 7 月 24-28 日,南京 6

  7. Global Orbital Angular Momentum Huge orbital angular momentum of the colliding system. reaction plane: can be determined by measuring v 2 and v 1 . - L y in unit of 10 5 � � � b/R A × b � p b = � n in Y � impact parameter re × | p b | in normal of the reaction plane 7 Hadron2017 2017 年 7 月 24-28 日,南京

  8. Global orbital angular momentum Gradient in p z -distribution along the x -direction x � impact z parameter b 8 Hadron2017 2017 年 7 月 24-28 日,南京

  9. Gradient in p z -distribution along x -direction p z ( x,b ) in unit of p 0 Au+Au at 200AGeV = ≈ p s / 2 c ( s ) 2 . 22 GeV 0 dp z \dx in unit of 2 p 0 \R A ≈ 2 p / R 0 . 68 GeV/fm 0 A ZTL & X.N. Wang, PRL 94, 102301(2005), PLB 629, 20(2005); J.H. Gao, S.W. Chen, W.T. Deng, ZTL, Q. Wang, X.N. Wang, PRC77, 044902 (2008). 9 Hadron2017 2017 年 7 月 24-28 日,南京

  10. Local Orbital Angular Momentum dp Δ = Δ z p x z dx Δ = − Δ Δ ≈ − L p x 1 . 7 y z for b =R A , Δ x =1fm � � has a preferred direction ( ) ! impact parameter of � Δ x b x x the two partons T T 10 Hadron2017 2017 年 7 月 24-28 日,南京

  11. Question Can such a local orbital angular momentum be transferred to the polarization of quark or anti-quark through the interactions between the partons in a strongly interacting QGP? q 1 + q 2 → q 1 + q 2 take a collision as an example. 2017 年 7 月 24-28 日,南京 Hadron2017 11

  12. Quark scattering with fixed reaction plane � Scattering amplitude in momentum space M ( q , E ) λ λ , T i a 2-dimensional Fourier transformation to impact parameter space � x Differential cross section w.r.t. the impact parameter T � d σ unp + λ d Δ σ σ 2 2 d d q d k � 1 � � � ∑ ∫ = − ⋅ = λ i ( k q ) x * T T e M ( k , E ) M ( q , E ) T T T λ λ λ λ , T , T 2 π 2 π 2 d 2 x T d x ( 2 ) ( 2 ) 2 d 2 x T i i λ T i spin independent part � average over the preferred directions x spin dependent part T Quark polarization after the scattering: ≡ Δ σ / σ P q unp 12 Hadron2017 2017 年 7 月 24-28 日,南京

  13. Qualitative results Static potential model with “small angle approximation” σ d Bessel functions unp 2 = α 2 µ 4 c K ( x ), � T s 0 D T 2 d x T Δ σ µ d � � � p 2 = − ⋅ × α µ µ D n ( p x ) 4 c K ( x ) K ( x ) � λ T + T s 0 D T 1 D T 2 d x E ( E m ) T q spin direction of the quark after the scattering QCD at finite temperature with HTL(hard thermal loop) gluon propagator σ scalar functions of x T d σ σ d d unp 2 ≡ + + − = α c F ( x ) � � � qq s T 2 2 2 d x d x d x T T T Δ σ σ σ d d d � � � 2 ≡ + − − = − ⋅ × α Δ n ( p x ) c F ( x ) � � � λ T qq s T 2 2 2 d x d x d x T T T Both have exactly the same form ! 13 Hadron2017 2017 年 7 月 24-28 日,南京

  14. Qualitative results d Δ σ ∝− ! n λ ⋅ ( ! p × ! x T ) normal of the d 2 x T AA -reaction plane p × ! ! ! x T x T has a preferred ! has a preferred ! − ! n re ∝ ! direction b p in × b direction ⎛ ⎞ d Δ σ = d Δ σ at ! n λ = − ! n re ⎜ ⎟ d 2 x T d 2 x T ⎝ ⎠ max a polarization of quark in the direction opposite to the normal of the reaction plane! 14 Hadron2017 2017 年 7 月 24-28 日,南京

  15. Quantitative results with QCD at finite temperature - Quark polarization q ∼ 0.02 − 0.25 P P q Δ p / T T : temperature ZTL & X.N. Wang, PRL 94, 102301(2005), PLB 629, 20(2005); J.H. Gao, S.W. Chen, W.T. Deng, ZTL, Q. Wang, X.N. Wang, PRC77, 044902 (2008). 15 Hadron2017 2017 年 7 月 24-28 日,南京

  16. A new picture of QGP in non-central AA collisions � n re � p � f p � x T The scattered quark acquires a negative polarization in the normal direction of the reaction plane! “global polarization” 16 Hadron2017 2017 年 7 月 24-28 日,南京

  17. Direct consequences In a non-central AA collision: global polarization of polarization hadronization quarks & anti-quarks of hadrons ! e + e − → Z 0 → ! Compare to: q + q → H (or V ) + X ρ 00 : probability for the third component of Lambda polarization the spin of K* 0 to take zero. OPAL e + e − → K *0 + X Vector meson spin alignment ρ 00 =1/3: unpolarized Hadron2017 17 2017 年 7 月 24-28 日,南京

  18. Consequence I: Hyperon polarization ↑ + q 2 ↑ + q 3 ↑ → H ↑ q 1 Recombination scenario u = P d = P u = P d ≡ P s = P P q , P s . We expect Λ Σ Ξ Ω Hyperon s − P q − 3 P 2 s (5 + P q − P s − 3 P 2 4 P s P P 2 ) 4 P s P q P H P s q s 3 − 4 P s + P 2 q P 3(1 + P 2 ) 3 − 4 P s + P 2 q P q s s P H in the case P q P q P q P q that P q = P s In the case that u = P d = P u = P d = P s = P P s H = P P q for all H ' s and H ' s . 18 Hadron2017 2017 年 7 月 24-28 日,南京

  19. Consequence I: Hyperon polarization q ↑ → H + X Fragmentation scenario Λ Σ Ξ Ω Hyperon q − n s P s − f s P 4 f s P 4 n s P n s P P H P s q s s n s + 2 f s 3( n s + 2 f s ) 3(2 n s + f s ) 3 P H in the case of 4 f s − n s 4 n s − f s n s P P 3( n s + 2 f s ) P 3(2 n s + f s ) P s P q =P s n s + 2 f s q q q 3 P H in the case of P P P P q q q q P q =P s and n s =f s 3 3 3 3 N u : N d : N s = 1:1: n s for quarks in QGP N u : N d : N s = 1:1: f s for quarks produced in fragmentation 19 Hadron2017 2017 年 7 月 24-28 日,南京

  20. Consequence I: Hyperon polarization Some of the expected qualitative features n The same for hyperons and anti-hyperons. n (Approximately) the same for different hyperons. n No polarization at b=0 , increases approximately linearly with b . 20 Hadron2017 2017 年 7 月 24-28 日,南京

  21. Consequence II: Vector meson spin alignment ↑ + q 2 ↑ → V Recombination scenario q 1 1 − P 2 1 − P q P ρ ( rec ) = K *( rec ) = q ρ 00 2 , ρ 00 s , 3 + P 3 + P q P q s V ( rec ) < 1/3 for q ↑ + q ↑ → V ρ 00 q ↑ → V + X or q ↑ → V + X Fragmentation scenario ! e + e − → Z 0 → ! q → K * + + X In analog to (parameterization) q + 1 + β P 2 1 + β P 2 f s n s 1 + β P 2 K *( rec ) = ρ ( frag ) = q ρ 00 q ρ 00 2 + 2 , 2 , β ≈ 0.5 s 3 − β P n s + f s n s + f s 3 − β P 3 − β P q q s ρ V ( frag ) > 1/3 for q ↑ → V + X or q ↑ → V + X 21 Hadron2017 2017 年 7 月 24-28 日,南京

  22. Measurements Hyperon: Spin self-analyzing parity violating decay H → N + M d Ω * = N dN 4 π (1 + α P H cos θ * ) V → M 1 + M 2 Vector meson: Strong decay d Ω * = 3 N dN V − 1)cos 2 θ * ]. V ) + (3 ρ 00 4 π [(1 − ρ 00 22 Hadron2017 2017 年 7 月 24-28 日,南京

  23. Earlier Measurements by STAR on global polarization STAR Collaboration 23 Hadron2017 2017 年 7 月 24-28 日,南京

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend