global solvability of some double diffusive convection
play

Global solvability of some double-diffusive convection systems . - PowerPoint PPT Presentation

. Global solvability of some double-diffusive convection systems . Mitsuharu O TANI Waseda University, Tokyo, JAPAN DIMO2013 September 10, 2013 Mitsuharu O TANI ( Waseda University, Tokyo, JAPAN) Double-Diffusive Convection


  1. . Global solvability of some double-diffusive convection systems . Mitsuharu ˆ O TANI Waseda University, Tokyo, JAPAN DIMO2013 September 10, 2013 Mitsuharu ˆ O TANI ( Waseda University, Tokyo, JAPAN) Double-Diffusive Convection DIMO2013-Diffuse Interface Models 1 / 44

  2. Introduction (BF) . Double-difusive convection flow based upon Brinkman-Forchheimer equations .  u t = ν ∆ u − u · ∇ u ⧹ − a u − ∇ p + g T + h C + f 1 in Ω × { t > 0 } , ⧹      T t + u · ∇ T = ∆ T + f 2 in Ω × { t > 0 } ,       C t + u · ∇ C = ∆ C + ρ ∆ T + f 3 in Ω × { t > 0 } ,      (BF) D ( N )  ∇ · u = 0 in  Ω × { t > 0 } , ( π )    u = 0 ; T = 0 ( ∂ T ∂ n = 0 ); C = 0 ( ∂ T  ∂ n = 0 ) on ∂ Ω × { t > 0 }       u | t = 0 = u 0 ( x ) ; T | t = 0 = T 0 ( x ) ; C | t = 0 = C 0 ( x ) ,        ( u (0) = u ( S ) ; T (0) = T ( S ) ; C (0) = C ( S ) , )  . u t = ∂ u ∂ t , T t = ∂ T ∂ t , C t = ∂ C u ( x , t ) : solenoidal velocity of the fluid, ∂ t , T ( x , t ) : temperature, C ( x , t ) : concentration of solute (salt for oceanography), p ( x , t ) : pressure, g , h , ρ, a : constant vector term derived from gravity, Soret coefficient, and Darcy coefficient Ω ⊂ R N : bounded domain, f 1 , f 2 , f 3 : external forces Mitsuharu ˆ O TANI ( Waseda University, Tokyo, JAPAN) Double-Diffusive Convection DIMO2013-Diffuse Interface Models 2 / 44

  3. Introduction Navier-Stokes Equations .  u t = ν ∆ u − u · ∇ u − ∇ p + f ( t ) in Ω × { t > 0 } ,       ∇ · u = 0 in Ω × { t > 0 } ,   (NS) ( π )   u | ∂ Ω = 0       u | t = 0 = u 0 ( x ) , ( u (0) = u ( S ))   . u t = ∂ u u ( x , t ) : solenoidal velocity of the fluid, ∂ t , p ( x , t ) : pressure. . Known Results . (NS) N = 2 : ∃ unique global solution (NS) N = 3 : ∃ unique local solution, ∃ unique global small solution (NS) π N = 2 : ∃ S − periodic solution for any f ∈ L 2 (0 , S ; L 2 ( Ω )) (NS) π N = 3 : ∃ S − periodic solution for small f ∈ L 2 (0 , S ; L 2 ( Ω )) . Mitsuharu ˆ O TANI ( Waseda University, Tokyo, JAPAN) Double-Diffusive Convection DIMO2013-Diffuse Interface Models 3 / 44

  4. Known Results Dirichlet Boundary Condition Known Results: Dirichlet BC . Theorem 1 ( Terasawa- ˆ O (2010)) . For all N ≤ 3 and for any u 0 ∈ H 1 σ ( Ω ) , T 0 , C 0 ∈ H 1 0 ( Ω ) , loc ([0 , ∞ ); L 2 ( Ω )) , (BF) D has a unique (global) f 1 ∈ L 2 loc ([0 , ∞ ); L 2 ( Ω )) , f 2 , f 3 ∈ L 2 solution U = ( u , T , C ) t satisfying  u t , A u ∈ L 2 (0 , S ; L 2 σ ( Ω )) , where A : Stokes Operator       T t , C t , ∆ T , ∆ C ∈ L 2 (0 , S ; L 2 ( Ω )) ,       u ∈ C ([0 , S ]; H 1 T , C ∈ C ([0 , S ]; H 1 σ ( Ω )) , 0 ( Ω )) ∀ S ∈ (0 , ∞ ) .   . . Theorem 2 ( Uchida- ˆ O (2013)) . For all N ≤ 3 and for any f 1 ∈ L 2 (0 , S ; L 2 ( Ω )) , f 2 , f 3 ∈ L 2 (0 , S ; L 2 ( Ω )) , (BF) D π has a S -periodic solution U = ( u , T , C ) t satisfying  u t , A u ∈ L 2 (0 , S ; L 2 σ ( Ω )) , where A : Stokes Operator       T t , C t , ∆ T , ∆ C ∈ L 2 (0 , S ; L 2 ( Ω )) ,       u ∈ C ([0 , S ]; H 1 T , C ∈ C ([0 , S ]; H 1 σ ( Ω )) , 0 ( Ω )) .   . Mitsuharu ˆ O TANI ( Waseda University, Tokyo, JAPAN) Double-Diffusive Convection DIMO2013-Diffuse Interface Models 4 / 44

  5. Neumann Boundary Condition Neumann BC . Double-difusive convection flow with Neumann BC .  u t = ν ∆ u − a u − ∇ p + g T + h C + f 1 in Ω × { t > 0 } ,       T t + u · ∇ T = ∆ T + f 2 in Ω × { t > 0 } ,         C t + u · ∇ C = ∆ C + ρ ∆ T + f 3 in Ω × { t > 0 } ,      (BF) N   ∇ · u = 0 in Ω × { t > 0 } , ( π )      u = 0 ; ∂ T ∂ n = 0; ∂ T  ∂ n = 0 on ∂ Ω × { t > 0 }        u | t = 0 = u 0 ( x ) ; T | t = 0 = T 0 ( x ) ; C | t = 0 = C 0 ( x ) ,        ( u (0) = u ( S ) ; T (0) = T ( S ) ; C (0) = C ( S ) , )  . Mitsuharu ˆ O TANI ( Waseda University, Tokyo, JAPAN) Double-Diffusive Convection DIMO2013-Diffuse Interface Models 5 / 44

  6. Neumann Boundary Condition Preliminaries Function Spaces Ω : bounded domain in R N , Q = Ω × (0 , S ) , σ ( Ω ) = { u = ( u 1 , u 2 , · · · , u N ) t ; u j ∈ C ∞ 0 ( Ω ) ∀ j = 1 , 2 , · · · , N , ∇ · u = 0 } , C ∞ H 1 ( Ω ) = ( H 1 ( Ω )) N = ( W 1 , 2 ( Ω )) N , L 2 ( Ω ) = ( L 2 ( Ω )) N , L 2 σ ( Ω ) = The closure of C ∞ σ ( Ω ) under the L 2 ( Ω ) -norm, H 1 σ ( Ω ) = The closure of C ∞ σ ( Ω ) under the H 1 ( Ω ) -norm, H 0 = L 2 ( Ω ) × L 2 ( Ω ) × L 2 ( Ω ) , H = L 2 σ ( Ω ) × L 2 ( Ω ) × L 2 ( Ω ) , C π ([0 , S ]; H ) = { U ∈ C ([0 , S ]; H ); U (0) = U ( S ) } , P Ω = The orthogonal projection from L 2 ( Ω ) onto L 2 σ ( Ω ) , A = −P Ω ∆ : The Stokes operator with domain D ( A ) = H 2 ( Ω ) ∩ H 1 σ ( Ω ) , D ( A N ) = { u ∈ H 2 ( Ω ); ∂ u with domain on ∂ Ω } , A N = − ∆ ∂ n = 0 A α , A α D and A α N denote the fractional powers of A , A D and A N of order α. Mitsuharu ˆ O TANI ( Waseda University, Tokyo, JAPAN) Double-Diffusive Convection DIMO2013-Diffuse Interface Models 6 / 44

  7. Neumann Boundary Condition Main Results Main Results: Initial Boundary Value Problem . Theorem 3 (Uchida- ˆ O (2013)) . Let N ≤ 3 and ( f 1 , f 2 , f 3 ) t ∈ L 2 (0 , S ; H 0 ) . Then for each initial data U 0 = ( u 0 , T 0 , C 0 ) t ∈ D ( A α ) × D ( A α N ) with α ∈ [1 / 4 , 1 / 2] , (BF) N admits a N ) × D ( A α unique solution U = ( u , T , C ) t ∈ C ([0 , S ]; H ) satisfying U (0) = U 0 and t 1 / 2 − α ∂ t u , t 1 / 2 − α A u ∈ L 2 (0 , S ; L 2  σ ( Ω )) ,       t 1 / 2 − α ||∇ u || L 2 ( Ω ) ∈ L p  ∗ (0 , S ) for all p ∈ [2 , ∞ ] ,     (#) α   t 1 / 2 − α ∂ t T , t 1 / 2 − α ∂ t C , t 1 / 2 − α ∆ T , t 1 / 2 − α ∆ C ∈ L 2 (0 , S ; L 2 ( Ω )) ,         t 1 / 2 − α ||∇ T || L 2 ( Ω ) , t 1 / 2 − α ||∇ C || L 2 ( Ω ) ∈ L p   ∗ (0 , S ) for all p ∈ [2 , ∞ ] ,  ∗ (0 , S ) = (∫ S | f ( t ) | p t − 1 dt ) 1 / p for 1 ⩽ p < ∞ and where L p ∗ = L p ( dt / t ) , i.e., || f || L p 0 L ∞ ∗ = L ∞ . . Mitsuharu ˆ O TANI ( Waseda University, Tokyo, JAPAN) Double-Diffusive Convection DIMO2013-Diffuse Interface Models 7 / 44

  8. Neumann Boundary Condition Main Results Main Results: Periodic Problem . Theorem 4 (Uchida- ˆ O (2013)) . Let N ≤ 3 and ( f 1 , f 2 , f 3 ) t ∈ L 2 (0 , S ; H 0 ) such that ∫ { } f 2 , f 3 ∈ f ; f ( x , t ) dxdt = 0 . (1) Q π admits a solution U = ( u , T , C ) t ∈ C π ([0 , S ]; H ) satisfying Then (BF) N ∂ t u , A u ∈ L 2 (0 , S ; L 2  σ ( Ω )) ,        u ∈ C ([0 , S ]; H 1 σ ( Ω )) ,     (#) 1 / 2   ∂ t T , ∂ t C , ∆ T , ∆ C ∈ L 2 (0 , S ; L 2 ( Ω )) ,          T , C ∈ C ([0 , S ]; H 1 ( Ω )) .   . . Remark 1 . Condition (1) is the necessary condition for the existence of the periodic solution of (BF) N . . Mitsuharu ˆ O TANI ( Waseda University, Tokyo, JAPAN) Double-Diffusive Convection DIMO2013-Diffuse Interface Models 8 / 44

  9. Neumann Boundary Condition Abstract Formulation Reduction to an Abstract Problem Let φ be a proper lower semi-continuous convex function from H into ( −∞ , + ∞ ] . Define the effective domain of φ by D ( φ ) = { U ∈ H ; φ ( U ) < + ∞} and the subdifferential of φ by ∂φ ( U ) = { f ∈ H ; φ ( V ) − φ ( U ) ⩾ ( f , V − U ) H for all V ∈ H } with domain D ( ∂φ ) = { U ∈ H ; ∂φ ( U ) � ∅ } . Then A = ∂φ becomes a maximal monotone operator. It is well known that J λ U = ( I + λ A ) − 1 U → U , as λ → + 0 for all U ∈ D ( A ) . Then for α ∈ (0 , 1) , p ∈ [1 , ∞ ] , by measuring how fast J λ U converges to U , we can define a nonlinear interpolation class B α, p ( A ) associated with A by B α, p ( A ) = { U ∈ D ( A ); t − α | U − J t U | H ∈ L p ∗ (0 , 1) } . We often use the notation � � � t − α | U − J t U | H | U | B α, p ( A ) = ∗ (0 , 1) . � � � L p If A is non-negative self-adjoint operator, then D ( A α ) = B α, 2 ( A ) . In the later arguments, it will be shown that the leading terms ( A , A N , A N ) t can be given as the subdifferential of a suitable lower semi-continuous convex function on H . Mitsuharu ˆ O TANI ( Waseda University, Tokyo, JAPAN) Double-Diffusive Convection DIMO2013-Diffuse Interface Models 9 / 44

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend