adaptive near minimal rank approximation for high
play

Adaptive Near-Minimal Rank Approximation for High Dimensional - PowerPoint PPT Presentation

Adaptive Near-Minimal Rank Approximation for High Dimensional Operator Equations Wolfgang Dahmen, RWTH Aachen joint work with Markus Bachmayr Numerical Methods for High-Dimensional Problems, April 15, 2014 W. Dahmen (RWTH Aachen) High


  1. Adaptive Near-Minimal Rank Approximation for High Dimensional Operator Equations Wolfgang Dahmen, RWTH Aachen joint work with Markus Bachmayr Numerical Methods for High-Dimensional Problems, April 15, 2014 W. Dahmen (RWTH Aachen) High Dimensional Operator Equations 1 / 33

  2. Contents Contents Motivation, Background 1 Tractability 2 Tensor Formats 3 High-Dimensional Diffusion Equations 4 Where do we Stand? Basic Strategy Main Result First Experiments 5 W. Dahmen (RWTH Aachen) High Dimensional Operator Equations 2 / 33

  3. Motivation High Dimensional PDEs Examples: (i) Electronic Schr¨ odinger equation: d = 3 n , n = # of particles (ii) Fokker-Planck equations: d = 3 K , K = length of bead string for polymer model (iii) Parameter dependent (stochastic) PDEs: d = ∞ Core task for (i), (ii): solution of high dimensional elliptic PDEs W. Dahmen (RWTH Aachen) High Dimensional Operator Equations 4 / 33

  4. Motivation Curse of Dimensionality, Tractability - Novak,Wo´ zniakowski u ( x 1 , . . . , x d ) , N ( ε, d ) := # lin information for accuracy ε Intractable: log N ( ε, d ) lim inf > 0 ε − 1 + d ε → 0 , d →∞ Weakly tractable: log N ( ε, d ) lim = 0 ε − 1 + d ε → 0 , d →∞ Polynomially intractable: s.t. N ( ε, d ) ≤ C ε − s d q , � ∃ C , s , q ∀ ε ∈ ( 0 , 1 ) u ∈ C ∞ , � u � C k ≤ M , k ∈ N : � polynomially intractable W. Dahmen (RWTH Aachen) High Dimensional Operator Equations 5 / 33

  5. Motivation Remedies?... “Excessive” regularity (Korobov spaces) “Hidden sparsity” with respect to a “problem dependent dictionary” Separation of variables, tensors... r ( ε ) � u ( x ) ≈ u k , 1 ( x 1 ) · · · u k , d ( x d ) u ( x ) = u ( x 1 , . . . , x d ) ∈ C s k = 1 ε ∼ r ( ε ) dn − s � N ∼ r ( ε ) dn ε ∼ n − s � N ∼ n d 1 s d 1 + 1 N ( ε, d ) ∼ ε − d / s or C α d ε − 1 / s s ε − 1 / s N ( ε, d ) ∼ r ( ε ) W. Dahmen (RWTH Aachen) High Dimensional Operator Equations 6 / 33

  6. Tractability Tractability of High-Dimensional PDEs Au = f ? u cannot be queried directly “Inversion Complexity” – “Representation Complexity” THEOREM: [D./DeVore/Grasedyck/S¨ uli] The inversion complexity of the high-dimensional Poisson problem is computationally polynomially tractable Important tools: exponential sums of operators, canonical format What about more general diffusion coefficients a ∈ R d × d ? div ( a ∇ u ) = f , W. Dahmen (RWTH Aachen) High Dimensional Operator Equations 8 / 33

  7. Tractability A Nasty Pitfall [de Silva...] u n , 1 ⊗ u n , 2 ⊗ u n , 3 + v n , 1 ⊗ v n , 2 ⊗ v n , 3 � �� � � �� � n ( a + 1 − n a ⊗ ( b − 1 n e ) ⊗ ( c + 1 n e ) ⊗ b ⊗ c n f ) = n a ⊗ b ⊗ c + e ⊗ b ⊗ c − n a ⊗ b ⊗ c + a ⊗ e ⊗ c − a ⊗ b ⊗ f + 1 na ⊗ e ⊗ f → e ⊗ b ⊗ c + a ⊗ e ⊗ c − a ⊗ b ⊗ f . . . The limit of rank-2 tensors can have rank 3 ... best approximations don’t exist ... W. Dahmen (RWTH Aachen) High Dimensional Operator Equations 9 / 33

  8. Tensor Formats Stable Tensor-Formats de Silva, Lathauwer, Hackbusch, Falco, Grasedyck, Oseledets, Schneider... Subspace based methods (Grassmann manifolds) Orthogonal projections, SVD, existence of best approximations... But, only in R d , f ( ν 1 , . . . , ν d ) , ν ∈ J = J 1 × · · · J d , #( J j ) < ∞ Extension to ℓ 2 ( J d ) , #( J ) = ∞ , by Hilbert-Schmidt “background basis” � function spaces... But: scaling problem! W. Dahmen (RWTH Aachen) High Dimensional Operator Equations 11 / 33

  9. Tensor Formats Tucker/Hierarchical Tucker Format View u = ( u ν 1 ,...,ν d ) ( ν 1 ,...,ν d ) ∈J d as order- d -tensor Mode frames: U ( j ) k ∈ ℓ 2 ( J ) , j = 1 , . . . , d , � U ( i ) k , U ( i ) l � = δ kl , k , l ∈ N ∞ ∞ � � � � u , U ( 1 ) k 1 ⊗ · · · ⊗ U ( d ) � U ( 1 ) k 1 ⊗ · · · ⊗ U ( d ) u = · · · k d =: a k U k k d k 1 = 1 k d = 1 k ∈ N d U ( j ) k = ( δ k , n ) n ∈ N � a = u Hierarchical Tucker (H-T)-format: hierarchical factorization of ( a k ) k ∈ N d rank r � rank-vector r ∈ N d How to find good mode frames? W. Dahmen (RWTH Aachen) High Dimensional Operator Equations 12 / 33

  10. Tensor Formats Workhorse SVD... [DeLathauwer, Hackbusch, Khoromskij...] v = ( v ν ) ν ∈J d � M ( i ) • Matricization: = ( v ν 1 ,...,ν i − 1 ,ν i ,ν i + 1 ,...,ν d ) ν i ∈J , ˇ v ν i ∈J d − 1 Tucker ranks: rank i ( u ) := dim range ( M ( i ) u ) , i = 1 , . . . , d • Tucker Format: SVD for M ( i ) u � left singular vectors U ( i ) : � HOSVD k d � � r | d + 1 r | 2 ∼ d | ˜ < + C | ˜ # supp i ( u ) , supp i ( u ) := supp z ∞ ∞ i = 1 z ∈ range M ( i ) u • Hierarchical Tucker Format: H SVD [Espig, Grasedyck, Hackbusch, Kolda, Khoromskij,Oseledets,...] Successive SVD for M ( α ) = ( u ν α ,ν β ) ν α ∈J | α | ,ν β ∈J | β | , α ⊂ { 1 , . . . , d } u d � � � 2 r | 4 ˜ ∼ d | ˜ < ∞ + C max r i # supp i ( u ) i i = 1 √ � � • Projections: � u − P U ( u ) , ˜ r u � ≤ 2 d − 3 inf � u − v � : v ∈ H ( ˜ r ) W. Dahmen (RWTH Aachen) High Dimensional Operator Equations 13 / 33

  11. High-Dimensional Diffusion Equations Where do we Stand? PDEs on Ω := Ω 1 × · · · × Ω d Model problem: d � a ( u , v ) := � v , Au � : ˜ H 1 (Ω) × ˜ H 1 (Ω) → R Au = − ∂ x i ( a i , j ∂ x j u )+ cu , i , j = 1 H 1 (Ω)) ′ find u ∈ H := ˜ For f ∈ ( ˜ H 1 (Ω) such that a ( u , v ) = � f , v � , v ∈ H A has finite (Tucker-) rank � � ∂ 2 x 1 ⊗ I ⊗ · · · ⊗ I + · · · + I ⊗ · · · ⊗ I ⊗ ∂ 2 When A = − x d f “tensor-sparse” ⇒ u = A − 1 f “tensor-sparse” [D/DeVore/Grasedyck/S¨ uli] W. Dahmen (RWTH Aachen) High Dimensional Operator Equations 16 / 33

  12. High-Dimensional Diffusion Equations Where do we Stand? Some Obstructions Stable tensor formats not defined for functions (except perhaps L 2 ( D d ) ) A : H → H ′ isomorphism, i.e., � u − v � H ∼ � f − Av � H ′ d � L 2 (Ω 1 ) ⊗ · · · ⊗ L 2 (Ω j − 1 ) ⊗ H 1 (Ω j ) ⊗ L 2 (Ω j + 1 ) ⊗ · · · ⊗ L 2 (Ω d ) H = j = 1 does not have a “cross-norm” A − 1 : H ′ → H has infinite rank because eigenvalues have the form ν ∈ N d λ ν = λ 1 ,ν 1 + · · · + λ d ,ν d , � a “scaling trap” W. Dahmen (RWTH Aachen) High Dimensional Operator Equations 17 / 33

  13. High-Dimensional Diffusion Equations Where do we Stand? Tensor methods for Opertor equations So far... [Ehrlache, Falc´ o, Hackbusch, Khoromskij, Kressner, Mohlenkamp/Beylkin, Nouy, Oseledets, Schneider,...] initial reduction to a fixed discrete system accuracy considerations detached from continuous solution approximation error and residuals are measured in the same (Euclidean) norm - “scaling trap” accuracy and rank growth cannot be controlled simultaneously PGD...convergence, ranks?... [Falc´ o, Chinesta, Ladevez, Nouy,...] What is different here... (building on existing tools + ...) Transformation into an equivalent ∞ -dimensional problem on ℓ 2 ( J d ) Use stable tensor formats on ℓ 2 ( J d ) Establish correct mapping properties by diagonal scaling � infinite ranks Control ranks by adaptive separable scaling approximations - exponential sums W. Dahmen (RWTH Aachen) High Dimensional Operator Equations 18 / 33

  14. High-Dimensional Diffusion Equations Basic Strategy Reduction to Problem in ℓ 2 ( J d ) “Universal background” basis: Ω := Ω 1 × · · · × Ω d { ψ ν = ψ ν 1 ⊗ · · · ⊗ ψ ν d : ν ∈ J d } O.N.B. for L 2 (Ω) � �� d 2 2 | ν i | � − 1 � � 2 ψ ν =: s − 1 Ψ = ν ψ ν ν ∈J d Riesz-basis for H ⊂ L 2 (Ω) i = 1 � � � � � � s − 1 ν a ( ψ ν , ψ µ ) s − 1 f , s − 1 Au = f ⇔ A u = f , A = , f = ν ψ ν ν,µ ∈J ν ∈J µ � �� � � �� � S − 1 TS − 1 S − 1 g Theorem: κ ( A ) := � A �� A − 1 � < ∼ 1 u = ( u ν ) ν ∈J d ∈ ℓ 2 ( J d ) u ∈ H ↔ W. Dahmen (RWTH Aachen) High Dimensional Operator Equations 20 / 33

  15. High-Dimensional Diffusion Equations Basic Strategy Scheme: Perturbed “Ideal Iteration” Strategy: u k + 1 = C ε 3 ( k ) � P ε 2 ( k ) ( u k + ω ( f − A u k )) � � � u − u k + 1 � ≤ ρ � u − u k � , ρ < 1 keep the u k in hierarchical Tucker format C ε 3 ( k ) coarsening of mode frames P ε 2 ( k ) H SVD projection to near-optimal subspaces � simultaneous control of ranks and mode frame sparsity control tolerances so as to ensure convergence W. Dahmen (RWTH Aachen) High Dimensional Operator Equations 21 / 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend