global map optimality by shrinking the combinatorial
play

Global MAP-Optimality by Shrinking the Combinatorial Search Area - PowerPoint PPT Presentation

Global MAP-Optimality by Shrinking the Combinatorial Search Area with Convex Relaxation Bogdan Savchynskyy, J org Kappes, Paul Swoboda, Christoph Schn orr Heidelberg Collaboratory for Image Processing (HCI) University of Heidelberg


  1. Global MAP-Optimality by Shrinking the Combinatorial Search Area with Convex Relaxation Bogdan Savchynskyy, J¨ org Kappes, Paul Swoboda, Christoph Schn¨ orr Heidelberg Collaboratory for Image Processing (HCI) University of Heidelberg Acknowledgement: Thanks to A. Shekhovtsov, B. Flach, T. Werner, K. Antoniuk, V. Franc from CMP of TU Prague for the extreme patience and fruitful discussions 1/35

  2. MRF Energy Minimization ÿ ÿ x P X E p x q : “ min θ v p x v q ` θ uv p x u , x v q min x P X v P V uv P E Segmentation [Rother et al. 2004], [Nowozin, Lampert 2010] Multi-camera stereo [Kolmogorov, Zabih 2002] Stereo and Motion [Kim et al. 2003] Clustering [Zabih, Kolmogorov. 2004] Medical imaging [Raj et al. 2007] Pose Estimation [Bergtholdt et al. 2010], [Bray et al. 2006] . . . Computer Vision energy minimization benchmarks: [Szeliski et al. 2008], [Kappes et al. CVPR, 2013] 2/35

  3. MRF Energy Minimization ÿ ÿ x P X E p x q : “ min θ v p x v q ` θ uv p x u , x v q min x P X v P V uv P E θ u p x u q θ v p x v q θ uv p x u , x v q x u x v u v graph p V , E q 3/35

  4. Integer LP Formulation ÿ ÿ ÿ ÿ θ v p x v q µ v p x v q ` θ uv p x u , x v q µ uv p x u , x v q min µ ě 0 v P V x v P X v uv P E x u , x v P X uv ř x v P V µ v p x v q “ 1 , v P V s.t. ř x v P V µ uv p x u , x v q “ µ u p x u q , x u P X u , uv P E ř x u P V µ uv p x u , x v q “ µ v p x v q , x v P X v , uv P E . µ P t 0 , 1 u N µ uv p x u , x v q 0 1 µ u p x u q µ v p x v q 1 0 0 0 u v 4/35

  5. Integer LP Formulation ÿ ÿ ÿ ÿ θ v p x v q µ v p x v q ` θ uv p x u , x v q µ uv p x u , x v q min µ ě 0 v P V x v P X v uv P E x u , x v P X uv ř x v P V µ v p x v q “ 1 , v P V s.t. ř x v P V µ uv p x u , x v q “ µ u p x u q , x u P X u , uv P E ř x u P V µ uv p x u , x v q “ µ v p x v q , x v P X v , uv P E . µ P t 0 , 1 u N µ P r 0 , 1 s N µ uv p x u , x v q 0 . 4 1 µ u p x u q µ v p x v q 0 . 6 0 0 . 0 0 u v 5/35

  6. LP Relaxation: typical solution color segmentation problem integer and fractional labelings Is the integer part of the solution correct? In general - NO! In practice - mostly YES. How can it be exploited to find an optimal integer solution? 6/35

  7. Related Approach: Partial Optimality QPBO:[Hammer et al. 1984],[Boros, Hammer 2002],[Rother et al. 2007], [Kohli et al. 2008],[Windheuser et al. 2012], [Kahl,Strandmark 2012]; Submodular relaxation:[Kovtun 2003], [Kovtun PhD Thesis 2005], [Shekhovtsov,Hlavaˇ c 2011]; LP relaxation:[Swoboda et al. 2013, 2014],[Shekhovtsov 2014]. ñ integer and fractional solved partial solution labeling loooooooooooooomoooooooooooooon loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon [Kovtun 2003] Our approach 7/35

  8. Related Approach: Partial Optimality QPBO:[Hammer et al. 1984],[Boros, Hammer 2002],[Rother et al. 2007], [Kohli et al. 2008],[Windheuser et al. 2012], [Kahl,Strandmark 2012]; Submodular relaxation:[Kovtun 2003], [Kovtun PhD Thesis 2005], [Shekhovtsov,Hlavaˇ c 2011]; LP relaxation:[Swoboda et al. 2013, 2014],[Shekhovtsov 2014]. ñ integer and fractional NOT solved partial solution labeling loooooooooooooomoooooooooooooon loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon [Kovtun 2003] Our approach 8/35

  9. Algorithm Idea 0) Initialize: Identify LP and ILP parts. t) Iterate till agreement on the border : Ñ Ñ Ñ Ñ solve ILP ( + ) increase ILP check subproblem + and LP ( + ) agreement separately if disagree on the border 9/35

  10. From Idea to Algorithm Is agreement on the border sufficient for optimality? How to select the initial LP/ILP splitting? How to encourage agreement on the border? How to avoid re-solving the LP part? (Do we need to solve the LP relaxation to optimality?) 10/35

  11. Is agreement on the border sufficient for optimality? 2 2 0 0 ´ 3 0 0 0 0 0 Counterexample due to A. Shekhovtsov 11/35

  12. Is consistency on the border sufficient for optimality? 2 0 ´ 3 0 0 0 Counterexample due to A. Shekhovtsov 12/35

  13. Is consistency on the border sufficient for optimality? 2 0 ´ 3 0 0 0 Counterexample due to A. Shekhovtsov 13/35

  14. Is consistency on the border sufficient for optimality? 2 2 0 0 ´ 3 0 0 0 0 0 Counterexample due to A. Shekhovtsov 14/35

  15. Background: Reparametrization (Equivalent transformations) ÿ ÿ ÿ ÿ θ φ ˜ θ φ ˜ θ v p x v q ` θ uv p x u , x v q ” v p x v q ` uv p x u , x v q v P V uv P E v P V uv P E ´ φ u , v p x u q θ φ ˜ u p x u q ` φ u , v p x u q θ φ ˜ uv p x u , x v q x u ô u v u v 15/35

  16. Background: Reparametrization, Dual problem Primal: E p x q “ ř θ v p x v q ` ř θ uv p x u , x v q min x v P V uv P E θ φ θ φ ˜ ˜ ř ` ř Dual: D p φ q “ max min v p x v q min uv p x uv q x v x uv φ v P V uv P E ´ φ u , v p x u q ˜ θ φ u p x u q ` φ u , v p x u q θ φ ˜ uv p x u , x v q x u ô u v u v 16/35

  17. Background: Reparametrization, Dual problem θ φ θ φ ˜ ˜ ř ` ř Primal: E p x q “ min v p x v q uv p x u , x v q x v P V uv P E θ φ ˜ θ φ ˜ Dual: D p φ q “ ř v p x v q ` ř uv p x uv q max min min φ x v x uv v P V uv P E D p φ q ď E p x q ´ φ u , v p x u q θ φ ˜ u p x u q ` φ u , v p x u q θ φ ˜ uv p x u , x v q x u ô u v u v 17/35

  18. Background: Arc Consistency ÿ ÿ θ φ ˜ θ φ ˜ Dual: D p φ q “ max v p x v q ` uv p x uv q min min x v x uv φ v P V uv P E loooomoooon looooomooooon γ v γ uv θ φ ˜ θ φ ˜ ˜ v p x v q ˜ v p x v q ˜ θ φ v p x v q ˜ θ φ θ φ uv p x u , x v q θ φ uv p x u , x v q uv p x u , x v q γ u γ u γ u γ uv γ uv γ u γ v γ v γ v γ uv γ uv u v u v u v strict arc consistency arc consistency strict arc consistency 18/35

  19. Background: Trivial Problem, Strict Arc Consistency Strict arc consistency in all nodes Theorem. ó the non-relaxed problem is solved. Proof. Strict arc consistency ñ D p φ q “ E p x ˚ q , x ˚ consists of γ v , γ uv . D p φ q ď E p x q ñ x ˚ is the solution. ˜ θ φ v p x v q ˜ θ φ uv p x u , x v q γ u γ uv γ v u v strict arc consistency 19/35

  20. Consistency on the border sufficient for optimality. Theorem. Let θ φ be strictly arc consistent on + . Then if LP ( + ) and ILP ( + ) solutions agree on the border ( ) their concatenation is globally optimal. 0 . 2 0 . 2 0 . 4 0 . 6 0 0 0 0 0 0 20/35

  21. LP Relaxation: typical (approximate) solution Blue - strictly arc consistent, red - otherwise. 21/35

  22. Algorithm 0) Initialize: Solve LP relaxation and reparametrize: θ Ñ ˜ θ φ ’Blue’ = the strictly arc consistent nodes. t) Iterate till agreement on the border: Ñ Ñ Ñ Ñ increase ILP apply ILP solver check subproblem + to + agreement if disagree on the border 22/35

  23. Why reparametrize? Reparametrization provides: optimality condition ( “ consistency on border ( )) initial splitting criterion (to and ) encouraging of border consistency Optimal labels ”vote“ for themselves in both LP ( + ) and ILP ( + ) subproblems potential speed-up of combinatorial solvers Acts as LP pre-solving Moreover... An LP solver needs to be executed only once Because due to strict consistency local decisions are optimal: nodes removal does not change the remaining part of the solution Suboptimal reparametrization can be used as well Because we did not employ optimality of the reparametrization 23/35

  24. Experimental Evaluation: OpenGM Library and Benchmark Open Library for Graphical Models: inference algorithms; benchmark data; includes Middlebury MRF benchmark comparison tables; Just type ’OpenGM’ in Google... 24/35

  25. Experimental Evaluation: OpenGM Library and Benchmark Open Library for Graphical Models: inference algorithms; benchmark data; includes Middlebury MRF benchmark comparison tables; Just type ’OpenGM’ in Google... Our code is freely available as a part of OpenGM! 25/35

  26. Experimental Evaluation: Methods Algorithms, available in OpenGM: We used: TRW-S [Kolmogorov 2005] as LP solver CPLEX [IBM] as ILP solver. 26/35

  27. Middlebury MRF Benchmark venus tsukuba family 434 ˆ 383 , 20 labels 384 ˆ 288 , 16 labels 752 ˆ 566 , 5 labels “ 3048043 “ 369218 E min “ 184813 E min E min E TRWS “ 3048296 E TRWS “ 369218 E TRWS “ 184825 27/35

  28. Middlebury MRF Benchmark panorama teddy 450 ˆ 375 , 60 labels 1071 ˆ 480 , 7 labels 1 iteration of ILP 1 iteration of ILP = out of memory = out of memory 28/35

  29. Middlebury MRF Benchmark Dataset Step (1) LP (TRWS) Step (3) ILP (CPLEX) | B | name it time, s it time, s min max E E tsukuba 250 186 369537 24 36 369218 130 656 venus 2000 3083 3048296 10 69 3048043 66 233 teddy 10000 14763 1345214 1 ´ ´ 2062 ´ family 10000 20156 184825 18 2 184813 11 109 pano ´ ´ ´ 10000 34092 169224 1 24474 Table : Results on Middlebury datasets 29/35

  30. Color Segmentation: 26 Potts models Solved 30/35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend