global fits in the neutrino sector
play

Global Fits in the Neutrino Sector Mona Dentler Workshop Fit(s) for - PowerPoint PPT Presentation

Global Fits in the Neutrino Sector Mona Dentler Workshop Fit(s) for the LHC run-2 11 October 2016 General Remark LHC is not a neutrino experiment neutrinos are not detected directly @ LHC But neutrinos are interesting for the physics


  1. Global Fits in the Neutrino Sector Mona Dentler Workshop ”Fit(s) for the LHC run-2“ 11 October 2016

  2. General Remark LHC is not a neutrino experiment → neutrinos are not detected directly @ LHC But neutrinos are interesting for the physics (SM @ high energies, BSM) we want to study @ LHC: • neutrino mass • sterile neutrino • CP-violation • non standard interactions ⇒ understanding neutrino physics can ”make fit for the LHC run-2 “! 2 / 25

  3. Introduction “ We are entering the precision era of neutrino physics ” 3 / 25

  4. Introduction “ We are entering the precision era of neutrino physics ” Experiments can agree – or disagree – more “subtly” 3 / 25

  5. Introduction “ We are entering the precision era of neutrino physics ” Experiments can agree – or disagree – more “subtly” • experiments have rarely exactly the same layout • ⇒ different systematics , parameter spaces , etc... 3 / 25

  6. Introduction “ We are entering the precision era of neutrino physics ” Experiments can agree – or disagree – more “subtly” • experiments have rarely exactly the same layout • ⇒ different systematics , parameter spaces , etc... starting point for global fits ! 3 / 25

  7. Neutrino Fit Parameters 4 / 25

  8. Neutrino Fit Parameters In the SM, there are seven free parameters for the neutrino, e.g.: • Three masses m i , i = e , µ, τ • Three mixing angles θ ij , i , j = e , µ, τ • One CP phase δ CP 5 / 25

  9. Neutrino Fit Parameters In the SM, there are seven free parameters for the neutrino, e.g.: • Three masses m i , i = e , µ, τ • Three mixing angles θ ij , i , j = e , µ, τ • One CP phase δ CP Most precise parameter values (not bounds) come from oscillation experiments Oscillation experiments are only sensitive to ∆ m 2 ij ≡ m 2 i − m 2 j ⇒ one parameter principally not accessible 5 / 25

  10. Neutrino Fit Parameters In the SM, there are seven free parameters for the neutrino, e.g.: • Three masses m i , i = e , µ, τ • Three mixing angles θ ij , i , j = e , µ, τ • One CP phase δ CP Most precise parameter values (not bounds) come from oscillation experiments Oscillation experiments are only sensitive to ∆ m 2 ij ≡ m 2 i − m 2 j ⇒ one parameter principally not accessible Nevertheless, in this talk concentrate on oscillation experiments 5 / 25

  11. Neutrino Oscillation Parameters • Neutrino flavor eigenstate | ν α � and mass eigenstate | ν k � not aligned: N � | ν α � = U ∗ α k | ν k � k =1 • Neutrino propagates as mass eigenstate. Time evolution : | ν k ( t ) � = exp( − iE k t ) | ν k � • Transition probability P αβ = | � ν β | ν α � | 2 N � P αβ = U ∗ α k U β k U α j U ∗ β j exp( − i ( E k − E j ) t ) k , j =1 • In the ultrarelativistic limit , using J αβ kj ≡ U ∗ α k U β k U α j U ∗ β j : kj ) sin 2 (∆ ij )+2 Re ( J αβ Im ( J αβ � � P αβ = δ αβ − 4 kj ) sin (∆ ij ) k > j k > j 6 / 25

  12. Neutrino Oscillation Parameters • Neutrino flavor eigenstate | ν α � and mass eigenstate | ν k � not aligned: N � | ν α � = U ∗ α k | ν k � k =1 • Neutrino propagates as mass eigenstate. Time evolution : | ν k ( t ) � = exp( − iE k t ) | ν k � • Transition probability P αβ = | � ν β | ν α � | 2 N � P αβ = U ∗ α k U β k U α j U ∗ β j exp( − i ( E k − E j ) t ) k , j =1 • In the ultrarelativistic limit , using J αβ kj ≡ U ∗ α k U β k U α j U ∗ β j : kj ) sin 2 (∆ ij )+2 Re ( J αβ Im ( J αβ � � P αβ = δ αβ − 4 kj ) sin (∆ ij ) k > j k > j ∼ Jarlskog invariant: measures CP violation 6 / 25

  13. Neutrino Oscillation Parameters • Neutrino flavor eigenstate | ν α � and mass eigenstate | ν k � not aligned: N � | ν α � = U ∗ α k | ν k � k =1 • Neutrino propagates as mass eigenstate. Time evolution : | ν k ( t ) � = exp( − iE k t ) | ν k � • Transition probability P αβ = | � ν β | ν α � | 2 N � P αβ = U ∗ α k U β k U α j U ∗ β j exp( − i ( E k − E j ) t ) k , j =1 • In the ultrarelativistic limit , using J αβ kj ≡ U ∗ α k U β k U α j U ∗ β j : kj ) sin 2 (∆ ij )+2 Re ( J αβ Im ( J αβ � � P αβ = δ αβ − 4 kj ) sin (∆ ij ) k > j k > j with frequency parameter ∆ ij ≡ ∆ m 2 ij L / (4 E ) 6 / 25

  14. Neutrino Oscillation Parameters Not all experiments are equally sensitive to all six parameters. ⇒ derive effective transition probability For example: “atmospheric frequency” • θ 31 ≈ 0 ⇒ Im ( P αβ ) = 0 ( δ CP attached to θ 31 ) • ∆ m 2 31 ≈ ∆ m 2 | ∆ m 2 32 | ≫ | ∆ m 2 32 , 21 | 32 ) sin 2 (∆ 31 ) − 4 J αβ ⇒ P αβ ≈ δ αβ − 4( J αβ 31 + J αβ 21 sin (∆ 21 ) • frequency such that ∆ 31 ≈ 1 , ⇒ ∆ 21 ≪ 1 32 ) sin 2 (∆ 31 ) ⇒ P αβ ≈ δ αβ − 4( J αβ 31 + J αβ ⇒ P ee ≈ 1 , P µ e ≈ P e µ ≈ 0 P µµ ≈ 1 − sin 2 2 θ 23 sin 2 (∆ 31 ) 7 / 25

  15. Neutrino Oscillation Parameters Not all experiments are equally sensitive to all six parameters. ⇒ derive effective transition probability For example: “atmospheric frequency” • θ 31 ≈ 0 ⇒ Im ( P αβ ) = 0 ( δ CP attached to θ 31 ) • ∆ m 2 31 ≈ ∆ m 2 | ∆ m 2 32 | ≫ | ∆ m 2 32 , 21 | 32 ) sin 2 (∆ 31 ) − 4 J αβ ⇒ P αβ ≈ δ αβ − 4( J αβ 31 + J αβ 21 sin (∆ 21 ) • frequency such that ∆ 31 ≈ 1 , ⇒ ∆ 21 ≪ 1 32 ) sin 2 (∆ 31 ) ⇒ P αβ ≈ δ αβ − 4( J αβ 31 + J αβ ⇒ P ee ≈ 1 , P µ e ≈ P e µ ≈ 0 P µµ ≈ 1 − sin 2 2 θ 23 sin 2 (∆ 31 ) cannot distinguish sin 2 θ 23 from 1 − “Octant Degeneracy”: sin 2 θ 23 7 / 25

  16. Neutrino Oscillation Parameters Not all experiments are equally sensitive to all six parameters. ⇒ derive effective transition probability “Eight-fold” Degeneracy octant degeneracy, ( δ CP , θ 13 ),( δ CP , mass-hierarchy ( sgn ∆ m 2 31 )) Use global fits to resolve degeneracies • combining information from detectors at different baselines • using additional oscillation channels • spectral information (wide band beam) • adding information on θ 13 from a reactor experiment • adding information from ( Mt scale) atmospheric neutrino experiments 7 / 25

  17. Global Fit to 3-Flavor Oscillations Gonzalez-Garcia, Maltoni, Schwetz, 1409.5439 8 / 25

  18. Global Fit to 3-Flavor Oscillations Gonzalez-Garcia, Maltoni, Salvado, Schwetz, 2012 Gonzalez-Garcia, Maltoni, Schwetz, 1409.5439 8 / 25

  19. How to perform a global fit on ν -oscillations 9 / 25

  20. How to perform a global fit on ν -oscillations The goal • build a χ 2 -function including all relevant systematics for each experiment • find the global minimum of this χ 2 -function The challenges • high-dimensional parameter space (6 + systematics) • event spectra depend non-trivially on pull parameters (systematics) • calculating expected spectra is computationally costly cf. full 3-flavor probability P αβ 10 / 25

  21. How to perform a global fit on ν -oscillations The strategy I: simple + fast algorithm Start from Powell’s algorithm to find minimum http://mathfaculty.fullerton.edu 11 / 25

  22. How to perform a global fit on ν -oscillations The strategy I: simple + fast algorithm Start from Powell’s algorithm to find minimum Modify search strategy: • divide search direction into true parameters: computationally expensive pull parameters (systematics): not so expensive • in each step, go exclusively in one direction (true/ pull) 11 / 25

  23. How to perform a global fit on ν -oscillations The strategy I: simple + fast algorithm Start from Powell’s algorithm to find minimum Modify search strategy: • divide search direction into true parameters: computationally expensive pull parameters (systematics): not so expensive • in each step, go exclusively in one direction (true/ pull) The Drawback Powell’s algorithm will only find local minimum 11 / 25

  24. How to perform a global fit on ν -oscillations The strategy I: simple + fast algorithm Start from Powell’s algorithm to find minimum Modify search strategy: • divide search direction into true parameters: computationally expensive pull parameters (systematics): not so expensive • in each step, go exclusively in one direction (true/ pull) The strategy II: optimal starting position • use pre-scans in some plane, e.g. systematics turned off ⇒ use outcome as start value for proper fit • use knowledge about degeneracies (e.g. octant) to find the respective degenerate solution • when doing a parameter-scan: use outcome @ previous grid point as starting position 11 / 25

  25. How to perform a global fit on ν -oscillations The strategy III: even faster Use highly optimized algorithms for manipulating 3 × 3 matrices, e.g. Cardano’s (analytical) formula to calculate eigenvalues J. Kopp, arXiv:physics/0610206 12 / 25

  26. How to perform a global fit on ν -oscillations The strategy III: even faster Use highly optimized algorithms for manipulating 3 × 3 matrices, e.g. Cardano’s (analytical) formula to calculate eigenvalues J. Kopp, arXiv:physics/0610206 The software GLoBES General Long Baseline Experiment Simulator https://www.mpi-hd.mpg.de/personalhomes/globes/ Huber, Kopp, Lindner, Rolinec, Winter, hep-ph/0701187 12 / 25

  27. Global Fits on Sterile Neutrinos 13 / 25

  28. Global Fits on Sterile Neutrinos Sterile neutrino 101 14 / 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend