global effects on dynamics
play

Global Effects on Dynamics Daniel HESTROFFER (IMCCE, Paris) CU4SSO - PowerPoint PPT Presentation

Global Effects on Dynamics Daniel HESTROFFER (IMCCE, Paris) CU4SSO Outline Asteroids and others population Simulations Global Effects on Dynamics Ground-based compl ementary data D. Hestroffer (IMCCE) GREAT-SSO, Pisa 2011 2 Asteroids


  1. Global Effects on Dynamics Daniel HESTROFFER (IMCCE, Paris) CU4—SSO

  2. Outline Asteroids and others population Simulations Global Effects on Dynamics Ground-based compl ementary data D. Hestroffer (IMCCE) — GREAT-SSO, Pisa 2011 2

  3. Asteroids population Detection: almost any object that is ‣ brighter than mag V ≤ 20 ‣ smaller than ≈ Φ < 0”7 ‣ motion less than ≈ 150mas/s Different objects observed ‣ NEOs ( ≈ 1500), MBAs ( ≈ 250,000), Trojans, Centaurs (few 100), TNOs (e.g. Pluto) ‣ comets (LPC, JFC), satellites (Ma, J, S, U, N ≈ 50) D. Hestroffer (IMCCE) — GREAT-SSO, Pisa 2011 3

  4. Simulations Rendez-vous (F . Mignard) sequence of observations and ephemerides GIBIS CCD proc. (C. Babusiaux, F . Arenou, A. Dell’Oro) focal plane and astrometry Input objects for Initial Conditions (IC) NEOs 2 populations ‣ known NEAs (90% complete Φ >1km) ‣ synthetic population (Bottke et al. 2002) other : astorb.dat (close to completion at V=20) known comets D. Hestroffer (IMCCE) — GREAT-SSO, Pisa 2011 4

  5. Detection size binaries Simulations Simulations D. Hestroffer (IMCCE) — GREAT-SSO, Pisa 2011 5

  6. Astrometry CCD in space — global astrometry astrometry at sub-mas level (conservative for NEOs) homogeneous ref frame ; absolute position One instrument size, shape model, spin = parameters for corrections or dynamical model Simulations Simulations Scanning law not equal for all objects MBAs vs. NEOs & TNOs D. Hestroffer (IMCCE) — GREAT-SSO, Pisa 2011 6

  7. Astrometry 63 obs Simulations Simulations A typical MBA, orbital period ≈ 5 years Different for NEA, Centaur, or faint object Precision σ AL ( λ ) 0.3 - 5mas (on a transit basis) D. Hestroffer (IMCCE) — GREAT-SSO, Pisa 2011 7

  8. Dynamical model Direct computation planets, GR simpl ified , non gravitational simpl ified A i asteroids mutual perturbations — pre-selection of close encounters Inversion only Gaia data, only linear case variational equations for partial derivatives Dynamics Dynamics iterations for linearisation and goodness of fit Variance Analysis D. Hestroffer (IMCCE) — GREAT-SSO, Pisa 2011 8

  9. Inversion Adjustement local (state vector), global parameters Mass close encounters ; binaries Non-gravitational effects comets ; NEOs Global dynamical parameters Dynamics Dynamics test of GR (dG/dt, PPN β ) global rotation (W o + dW/dt) D. Hestroffer (IMCCE) — GREAT-SSO, Pisa 2011 9

  10. State vector Linear Least-Squares: O-C = A.dx = [ ∂ λ / ∂ x].dx Dynamics Dynamics no long period effects (planetary satellites) cases of rank deficiency - no full osculating elements D. Hestroffer (IMCCE) — GREAT-SSO, Pisa 2011 10

  11. Masses Mouret et al. (2007) J. Hilton Close encounters impulse for pre-selection global parameters for inversion Dynamics Dynamics 150 masses better than50% D. Hestroffer (IMCCE) — GREAT-SSO, Pisa 2011 11

  12. Local test of GR large # of test particles through solar system as sensitive as Mercury separate PPN β ( a. ( 1 - e 2 ) ) - 1 solar J 2 ( a. ( 1 - e 2 ) ) - 2 Phaethon Icarus Dynamics Dynamics σ ( β ) 10 -4 Mercury σ (J 2 ) 5x10 -8 D. Hestroffer (IMCCE) — GREAT-SSO, Pisa 2011 12

  13. Ground-based Support P. Tanga N asteroids D. Hestroffer (IMCCE) — GREAT-SSO, Pisa 2011 13

  14. Ground-based Support Observation during mission for critical objects Observations outside mission mass, GR, non gravitational parameters Ground based Ground based similar precision ; secular terms direct (astrometry) or indirect (physical parameters for dynamical model) D. Hestroffer (IMCCE) — GREAT-SSO, Pisa 2011 14

  15. Gaia (DP a (DPAC) MBAs mass NEOs + all GR comets + NEOs A i binaries mass all W, dG/dt post-Gai t-Gaia MBAs mass Ground based Ground based NEOs GR comets NEOs A i satellites orbits, planets Trojans GR TNOs κ D. Hestroffer (IMCCE) — GREAT-SSO, Pisa 2011 15

  16. Discussion Instrument degradation / extended mission Indirect astrometry from (re)reduction with Gaia stellar catalogue Satellites and other long-term effects Planets pseudo-positions Larger system Gaia+GB data Other orbit propagators Dynamical families End (% End (% ... D. Hestroffer (IMCCE) — GREAT-SSO, Pisa 2011 16

  17. End (% End (% so, was angular momentum conserved ?.. D. Hestroffer (IMCCE) — GREAT-SSO, Pisa 2011 17

  18. D. Hestroffer (IMCCE) — GREAT-SSO, Pisa 2011 19

  19. Results Ω x-y-z d Ω /dt Ġ /G κ [ μ as] [ μ as/yr] [yr -1 ] [m/s 2 ] Gaia 5-5-15 1-1-5 2 E -12 [ 8E-11 ] (350,000 obj.) LLR — 100 3 E -13 — (Williams et al. 2004) Ephemerides √ 40 5 E- 13 √ (Folkner et al. 2009) TNOs 2E-10 — — — (Wallin et al. 2007) J 2 J 2 β β correl. alone alone global global Gaia 5E-08 1E-04 5E-08 1E-04 0.1 to 0.9 INPOP — 2 E- 4 — — — (Fienga et al. 2008) LLR - EMP — 1 E- 4 — — — (Williams ‘04, Pitjeva ‘05) Bepi Colombo — — 2 E- 9 2 E- 6 0.997 (Milani et al. 2009) NEOs — — √ √ √ (Margot et al. 2009) D. Hestroffer (IMCCE) — GREAT-SSO, Pisa 2011 20

  20. Questions / Réponses q q r q r r D. Hestroffer (IMCCE) — CNAP 2011 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend