geometric inequalities on the heisenberg group
play

Geometric inequalities on the Heisenberg group Kinga Sipos - PowerPoint PPT Presentation

Geometric inequalities on the Heisenberg group Geometric inequalities on the Heisenberg group Kinga Sipos University of Bern kinga.sipos@math.unibe.ch MAnET Midterm Meeting, Helsinki, 8-9 December 2015 Geometric inequalities on the Heisenberg


  1. Geometric inequalities on the Heisenberg group Geometric inequalities on the Heisenberg group Kinga Sipos University of Bern kinga.sipos@math.unibe.ch MAnET Midterm Meeting, Helsinki, 8-9 December 2015

  2. Geometric inequalities on the Heisenberg group Definition of the Brunn-Minkowski, Pr´ ekopa-Leindler and Borell-Brascamp-Lieb inequalities 1 Definition of the Brunn-Minkowski, Pr´ ekopa-Leindler and Borell-Brascamp-Lieb inequalities 2 Proof of the Borell-Brascamp-Lieb inequality in the euclidean case Proof for normalized functions f , g and p = − 1 n 3 Borell-Brascamp-Lieb inequality on the Riemannian manifolds 4 N. Juillet’s disproval of existence for some types of Brunn-Minkowski inequality 5 Further ideas / possibilities 6 Bibliography MAnET Midterm Meeting, Helsinki, 8-9 December 2015 2

  3. Geometric inequalities on the Heisenberg group Definition of the Brunn-Minkowski, Pr´ ekopa-Leindler and Borell-Brascamp-Lieb inequalities ...in the euclidean case Brunn-Minkowski inequality | (1 − s ) A + sB | 1 / n ≥ (1 − s ) | A | 1 / n + s | B | 1 / n for all A , B ⊂ R n Borel sets, s ∈ [0 , 1] Pr´ ekopa-Leindler inequality Let f , g , h : R n → [0 , ∞ ) be measurable functions and fix s ∈ (0 , 1). h ((1 − s ) x + sy ) ≥ f ( x ) 1 − s g ( y ) s , ∀ x , y ∈ R n ⇒ � 1 − s �� � s � �� R n h ≥ R n f R n g Borell-Brascamp-Lieb inequality Let f , g , h : R n → [0 , ∞ ) be measurable functions, fix s ∈ (0 , 1) and p ≥ − 1 n . p s ( f ( x ) , g ( y )) , ∀ x , y ∈ R n ⇒ h ((1 − s ) x + sy ) ≥ M p � 1+ np �� � � h ≥ M f , g , s s ( a , b ) = ((1 − s ) a p + sb p ) 1 / p , for any a , b > 0, p ∈ R \ { 0 } and where M p s ( a , b ) = a 1 − s b s , which is obtained from M p s ∈ [0 , 1] and M 0 s ( a , b ) by p → 0. MAnET Midterm Meeting, Helsinki, 8-9 December 2015 3

  4. Geometric inequalities on the Heisenberg group Definition of the Brunn-Minkowski, Pr´ ekopa-Leindler and Borell-Brascamp-Lieb inequalities Relation between the BM, PL and BBL inequalities Observe that: Borell-Brascamp-Lieb inequality ⇒ Pr´ ekopa-Leindler inequality 1 p → 0 ((1 − s ) a p + sb p ) p → 0 M p As M 0 p = a 1 − s b s , for all s ( a , b ) = lim s ( s , b ) = lim a , b > 0 and s ∈ [0 , 1], PL can be obtained by setting p = 0 in BBL. Borell-Brascamp-Lieb inequality ⇒ Brunn-Minkowski inequality Choosing f , g and h to be the characteristic functions of the Borel sets A , B , respectively Z s ( A , B ), these functions satisfy the condition of the BBL inequality, which implies that | Z s ( A , B ) | 1 / n ≥ (1 − s ) | A | 1 / n + s | B | 1 / n . MAnET Midterm Meeting, Helsinki, 8-9 December 2015 4

  5. Geometric inequalities on the Heisenberg group Definition of the Brunn-Minkowski, Pr´ ekopa-Leindler and Borell-Brascamp-Lieb inequalities ...in case of the Heisenberg group How to define the intermediate points? (Let s ∈ [0 , 1] be fixed.) in the euclidean case for the s -intermediate point associated to the pointpair ( x , y ) ∈ R n × R n we use the convex combination (1 − s ) x + sy MAnET Midterm Meeting, Helsinki, 8-9 December 2015 5

  6. Geometric inequalities on the Heisenberg group Definition of the Brunn-Minkowski, Pr´ ekopa-Leindler and Borell-Brascamp-Lieb inequalities ...in case of the Heisenberg group How to define the intermediate points? (Let s ∈ [0 , 1] be fixed.) in the euclidean case for the s -intermediate point associated to the pointpair ( x , y ) ∈ R n × R n we use the convex combination (1 − s ) x + sy with the Heisenberg group operator ( ∗ ) and λ -dilation ( ρ λ ) an s -intermediate point associated to the pointpair ( x , y ) ∈ H n × H n can be defined as ρ 1 − s ( x ) ∗ ρ s ( y ) MAnET Midterm Meeting, Helsinki, 8-9 December 2015 6

  7. Geometric inequalities on the Heisenberg group Definition of the Brunn-Minkowski, Pr´ ekopa-Leindler and Borell-Brascamp-Lieb inequalities ...in case of the Heisenberg group How to define the intermediate points? (Let s ∈ [0 , 1] be fixed.) in the euclidean case for the s -intermediate point associated to the pointpair ( x , y ) ∈ R n × R n we use the convex combination (1 − s ) x + sy with the Heisenberg group operator ( ∗ ) and λ -dilation ( ρ λ ) an s -intermediate point associated to the pointpair ( x , y ) ∈ H n × H n can be defined as ρ 1 − s ( x ) ∗ ρ s ( y ) with the help of geodesics an s -intermediate point between x ∈ H n and y ∈ H n can be defined as that point on the geodesic connecting the two points, which divides the geodesic in segments with ratio s : (1 − s ) MAnET Midterm Meeting, Helsinki, 8-9 December 2015 7

  8. Geometric inequalities on the Heisenberg group Definition of the Brunn-Minkowski, Pr´ ekopa-Leindler and Borell-Brascamp-Lieb inequalities ... in case of the Heisenberg group When y ∈ cut ( x ), the geodesic from x to y is not uniquely defined. Let’s introduce the notation Z s ( x , y ) for the set of s -intermediate points associated to ( x , y ) ∈ H n × H n : Z s ( x , y ) = { z ∈ H n | d ( x , z ) = sd ( x , y ) and d ( z , y ) = (1 − s ) d ( x , y ) } For A , B ⊂ H n define � Z s ( A , B ) = Z s ( x , y ) ( x , y ) ∈ A × B MAnET Midterm Meeting, Helsinki, 8-9 December 2015 8

  9. Geometric inequalities on the Heisenberg group Definition of the Brunn-Minkowski, Pr´ ekopa-Leindler and Borell-Brascamp-Lieb inequalities ...in case of the Heisenberg group Brunn-Minkowski inequality | Z s ( A , B ) | 1 / d ≥ (1 − s ) | A | 1 / d + s | B | 1 / d for all A , B ⊂ H n Borel sets, s ∈ [0 , 1] Pr´ ekopa-Leindler inequality Let f , g , h : R n → [0 , ∞ ) be measurable functions and fix s ∈ (0 , 1). � 1 − s �� � s �� h ( z ) ≥ f ( x ) 1 − s g ( y ) s , ∀ x , y ∈ H n , z ∈ Z s ( x , y ) ⇒ � H n h ≥ H n f H n g Borell-Brascamp-Lieb inequality Let f , g , h : H n → [0 , ∞ ) be measurable functions, fix s ∈ (0 , 1) and p ≥ − 1 d . h ( z ) ≥ M p s ( f ( x ) , g ( y )) , ∀ x , y ∈ H n , z ∈ Z s ( x , y ) ⇒ p �� � � 1+ dp � ⇒ H n h ≥ M H n f , H n g s MAnET Midterm Meeting, Helsinki, 8-9 December 2015 9

  10. Geometric inequalities on the Heisenberg group Definition of the Brunn-Minkowski, Pr´ ekopa-Leindler and Borell-Brascamp-Lieb inequalities ... in case of the Heisenberg group How to choose d ? Use for d the topological demension 2 n + 1? the homogenous dimension 2 n + 2? something else? MAnET Midterm Meeting, Helsinki, 8-9 December 2015 10

  11. Geometric inequalities on the Heisenberg group Proof of the Borell-Brascamp-Lieb inequality in the euclidean case Sketch Proof for normalized functions f , g and p = − 1 n . Borell-Brascamp-Lieb inequality for normalized functions Let f , g , h : R n → [0 , ∞ ) be measurable functions with � � R n f = R n g = 1. Fix s ∈ (0 , 1). � − 1 ( f ( x ) , g ( y )) , ∀ x , y ∈ R n ⇒ h ((1 − s ) x + sy ) ≥ M h ≥ 1 n s R n Rescaling argument. MAnET Midterm Meeting, Helsinki, 8-9 December 2015 11

  12. Geometric inequalities on the Heisenberg group Proof of the Borell-Brascamp-Lieb inequality in the euclidean case Proof for normalized functions f , g and p = − 1 n Notation: supp ( f ) = X , supp ( g ) = Y , µ = f d x , ν = g d y . Consider a convex function ϕ : R n → R such that for S = ▽ ϕ : X → Y , S # µ = ν . Consider the displacement interpolant measure of µ and ν : [ µ, ν ] s = ( S s )# µ with probability density ρ s , where S s = (1 − s ) Id + s ▽ ϕ . By the concavity of the det ( · ) 1 / n function over symmetric, positive-semidefinite matrices det ((1 − s ) I n + sHess ( ϕ ( x ))) 1 / n ≥ (1 − s )( det ( I n )) 1 / n + s ( Hess ( ϕ ( x ))) 1 / n . Monge-Amp` ere for f and ρ s : f ( x ) = ρ s ( S s ( x )) Jac ( S s )( x ) , µ − a . e x , where Jac ( S s )( x ) = det ((1 − s ) I n + sHess ϕ ( x )). Monge-Amp` ere for f and g : f ( x ) = g ( S ( x )) Jac ( S )( x ) , µ − a . e x , where Jac ( S )( x ) = det ( Hess ( ϕ ( x ))). MAnET Midterm Meeting, Helsinki, 8-9 December 2015 12

  13. Geometric inequalities on the Heisenberg group Proof of the Borell-Brascamp-Lieb inequality in the euclidean case Proof for normalized functions f , g and p = − 1 n det ((1 − s ) I n + sHess ( ϕ ( x ))) 1 / n ≥ (1 − s )( det ( I n )) 1 / n + s ( Hess ( ϕ ( x ))) 1 / n f ( x ) = ρ s ( S s ( x )) det ((1 − s ) I n + sHess ϕ ( x )) f ( x ) = g ( S ( x )) det ( Hess ( ϕ ( x ))) MAnET Midterm Meeting, Helsinki, 8-9 December 2015 13

  14. Geometric inequalities on the Heisenberg group Proof of the Borell-Brascamp-Lieb inequality in the euclidean case Proof for normalized functions f , g and p = − 1 n det ((1 − s ) I n + sHess ( ϕ ( x ))) 1 / n ≥ (1 − s )( det ( I n )) 1 / n + s ( Hess ( ϕ ( x ))) 1 / n f ( x ) = ρ s ( S s ( x )) det ((1 − s ) I n + sHess ϕ ( x )) f ( x ) = g ( S ( x )) det ( Hess ( ϕ ( x ))) � f ( x ) � 1 / n � 1 / n � f ( x ) ⇒ ≥ (1 − s ) + s ρ s ( x ) g ( S ( x )) (1 − s )( f ( x )) − 1 / n + sg ( S ( x )) − 1 / n ( ρ s ( x )) − 1 / n ≥ M − 1 / n ρ s ( x ) ≤ ( f ( x ) , g ( S ( x ))) s MAnET Midterm Meeting, Helsinki, 8-9 December 2015 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend