on logarithmic sobolev inequalities
play

On logarithmic Sobolev inequalities With a focus on the Heisenberg - PowerPoint PPT Presentation

On logarithmic Sobolev inequalities With a focus on the Heisenberg group Ronan Herry LAMA UMR CNRS 8050 (Universit Paris Est Marne la Valle) & MRU (Universit du Luxembourg). Probabilits de demain, IHP May 3, 2018 Todays plan


  1. On logarithmic Sobolev inequalities With a focus on the Heisenberg group Ronan Herry LAMA UMR CNRS 8050 (Université Paris Est Marne la Vallée) & MRU (Université du Luxembourg). Probabilités de demain, IHP May 3, 2018

  2. Today’s plan ◮ A brief history of logarithmic Sobolev inequalities. ◮ The historical proof of Gross for the Gaussian measure. ◮ Logarithmic Sobolev inequalities on the Heisenberg group.

  3. Bibliography L. Gross. “Logarithmic Sobolev inequalities”. In: Amer. J. Math. (1975). D. Bakry & M. Émery. “Diffusions hypercontractives”. In: Séminaire de probabilités, XIX, 1983/84 (1985). C. Ané et al. Sur les inégalités de Sobolev logarithmiques . Société Mathématique de France, Paris, 2000. M. Ledoux. “The geometry of Markov diffusion generators”. In: Ann. Fac. Sci. Toulouse Math. (6) (2000). D. Bakry, I. Gentil & M. Ledoux. Analysis and geometry of Markov diffusion operators . Springer, Cham, 2014. M. Bonnefont, D. Chafaï & R. Herry. “On logarithmic Sobolev inequalities for the heat kernel on the Heisenberg group”. preprint. July 2016.

  4. Setting Homogeneous Markov processes � f ( y ) p t ( x , d y ) = E ( f ( X t ) | X 0 = x ). P t f ( x ) = Reversibility There exists a probability measure µ such that µ ( fP t g ) = µ ( gP t f ). Feller property | P t f − f | L 2 ( µ ) → 0 as t → 0.

  5. Properties Semigroup P t + s = P t P s . Contraction | P t | L p ( µ ) → L p ( µ ) ≤ 1 for p ∈ [1 , ∞ ]. Hypercontractivity? Can we strengthen the contractivity property? E.g. does it hold | P t | L 2 ( µ ) → L 4 ( µ ) ≤ 1 for some t > 0?

  6. Generators, carré du champ and energies Theorem (Yoshida) Lf = lim t → 0 P t f − f unbounded L 2 ( µ ) → L 2 ( µ ) . t L has a dense domain D in L 2 ( µ ) , P t ( D ) ⊂ D. P t f solves the abstract heat equation ∂ t P t f = LP t f = P t Lf . Carré du champ 2Γ( f , g ) = L ( fg ) − fLg − gLf bilinear symmetric positive. Dirichlet energy E ( f , g ) = µ (Γ( f , g )) = − µ ( fLg ) = − µ ( gLf ). Iterated carré du champ 2Γ 2 ( f , g ) = L (Γ( f , g )) − Γ( f , Lg ) − Γ( g , Lf ).

  7. Logarithmic Sobolev inequalities and hypercontractivity Logarithmic Sobolev inequality There exists ρ > 0 such that for all f µ ( f 2 log f 2 ) − µ ( f 2 ) log µ ( f 2 ) ≤ 2 ρ E ( f , f ). Theorem (Gross 1975; Bakry & Émery 1985) The invariant measure of a reversible Markov semigroup satisfies a logarithmic Sobolev inequality if and only if it is hypercontractive.

  8. The logarithmic Sobolev inequality for the Ornstein-Uhlenbeck semigroup √ Dynamic d X t = 2 d B t − X t d t . γ ( d x ) = e − x 2 / 2 (2 π ) − 1 / 2 d x . Invariant measure √ � f (e − t x + Semigroup P t f ( x ) = 1 − e − 2 t y ) γ ( d y ). Lf = − f ′′ + xf ′ . Generator Carré du champ Γ( f , g ) = f ′ g ′ . Γ 2 ( f , g ) = f ′ g ′ + f ′′ g ′′ . Iterated carré du champ Theorem (Gross 1975) This semigroup satisfies a logarithmic Sobolev inequality, hence it is hypercontractive. More precisely, γ ( f 2 log f 2 ) − γ ( f 2 ) log γ ( f 2 ) ≤ 2 γ (( f ′ ) 2 ) .

  9. Idea of the proof of Gross ◮ Prove the logarithmic Sobolev inequality for the Markov dynamic on the two-points space with invariant measure ν = 1 2 ( δ a + δ b ). ◮ Show that logarithmic Sobolev inequalities behave well with respect to tensorization, hence ν n satisfies a logarithmic Sobolev inequality. ◮ Push-forward the logarithmic Sobolev inequality for ν n by 1 � n i =1 x i , pass to the limit n → ∞ and use the central limit n theorem.

  10. The logarithmic Sobolev inequality for weighted manifolds √ Dynamic d X t = 2 d B t − ∇ V ( X t ) d t . γ V ( d x ) = e − V ( x ) vol( d x ). Invariant measure Generator Lf = − ∆ f + ∇ V · ∇ f . Carré du champ Γ( f , g ) = ∇ f · ∇ g . Iterated carré du champ Γ 2 ( f , g ) = Ric( ∇ f , ∇ g ) + ∇ f · ∇ g + ∇ 2 f · ∇ 2 g . Theorem (Bakry & Émery 1985) The invariant measure of this reversible semigroup satisfies a logarithmic Sobolev inequality if Ric + ∇ 2 V ≥ K > 0 . Later on, Bakry showed this is an equivalence.

  11. The Heisenberg group Lie algebra H = span { X , Y , Z } where [ X , Y ] = Z . Associated Lie group H = R 3 with group law ( x , y , z ) · ( x ′ , y ′ , z ′ ) = ( x + x ′ , y + y ′ , z + z ′ + 1 2 ( xy ′ − x ′ y )). H encodes the increment in R 2 and computes the generated area. Left-invariant basis of the tangent space X = ∂ x − y 2 ∂ z , Y = ∂ y + x 2 ∂ z , Z = ∂ z .

  12. Sub-Riemannian structure of the Heisenberg group Horizontal paths � 1 x 2 + ˙ 1 / 2 . h = ( x , y , z ): [0 , 1] → H , ˙ h ∈ span { X , Y } , L ( h ) = ( 0 ˙ y 2 ) Theorem (Chow) H is path connected with horizontal paths. Carnot-Carathéodory distance d ( h 0 , h 1 ) = inf { L ( h ) | h horizontal , h (0) = h 0 , h (1) = h 1 } . Topologically H = R 3 and the Haar measure is the 3-d Lebesgue measure. The metric (Hausdorff) dimension is 4. Sub-Riemannian operators � � X ; ∆ = X 2 + Y 2 . ∇ = Y

  13. The Ornstein-Uhlenbeck semigroup on H � ( B 1 H t = ( B 1 t , B 2 t , 1 t d B 2 t − B 2 t d B 1 Brownian motion on H t )). 2 √ Dynamic d X t = 2 d B 1 t − X t d t , √ 2 d B 2 d Y t = t − Y t d t , 2 d Z t = X t d Y t − Y t d X t . Invariant measure γ H = law ( H 1 ). Generator Lf = − ∆ f + ( x , y ) · ∇ f . Carré du champ Γ( f , g ) = ∇ f · ∇ g . Iterated carré du champ Γ 2 ( f , g ) = we can compute it but we do not use it. Heuristically on H , Ric = −∞ so we cannot use the result of Bakry & Émery 1985.

  14. A logarithmic Sobolev inequality on H Theorem (Bonnefont, Chafaï & Herry 2016) γ H ( f 2 log f 2 ) − γ H ( f 2 ) log γ H ( f 2 ) ≤ 2 γ H ( |∇ f | 2 ) + γ H (( Zf ) 2 a ) , t ) 2 + ( B 2 � 1 t ) 2 d t | H 1 = h ) . where a ( h ) = E ( 0 ( B 1 ◮ This inequality is optimal in the horizontal directions. ◮ Not known if optimal in the vertical direction. ◮ The right-hand side contains a vertical term.

  15. Idea of proof ◮ Essentially the same as the classical proof of Gross 1975. ◮ By Gross 1975 result and tensorization γ n satisfies a logarithmic Sobolev inequality. ◮ Push γ n forward by S n = 1 � n i =1 h i , where the sum is with n respect to the group law and pass to the limit in n → ∞ . ◮ The non-commutativity produces the extra term γ H (( Zf ) 2 a ).

  16. Open questions ◮ Link with some improved contractivity? ◮ Comparison with other sub-Riemannian inequalities on H ? ◮ Extension to other sub-Riemannian Lie groups?

  17. Bibliography L. Gross. “Logarithmic Sobolev inequalities”. In: Amer. J. Math. (1975). D. Bakry & M. Émery. “Diffusions hypercontractives”. In: Séminaire de probabilités, XIX, 1983/84 (1985). C. Ané et al. Sur les inégalités de Sobolev logarithmiques . Société Mathématique de France, Paris, 2000. M. Ledoux. “The geometry of Markov diffusion generators”. In: Ann. Fac. Sci. Toulouse Math. (6) (2000). D. Bakry, I. Gentil & M. Ledoux. Analysis and geometry of Markov diffusion operators . Springer, Cham, 2014. M. Bonnefont, D. Chafaï & R. Herry. “On logarithmic Sobolev inequalities for the heat kernel on the Heisenberg group”. preprint. July 2016.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend