quantitative rectifiability in the heisenberg group
play

Quantitative rectifiability in the Heisenberg group Katrin F assler - PowerPoint PPT Presentation

Quantitative rectifiability in the Heisenberg group Katrin F assler University of Fribourg, Switzerland Joint work with Vasileios Chousionis and Tuomas Orponen Quantitative rectifiability in the Heisenberg group (of codimension 1 sets)


  1. Quantitative rectifiability in the Heisenberg group Katrin F¨ assler University of Fribourg, Switzerland Joint work with Vasileios Chousionis and Tuomas Orponen

  2. Quantitative rectifiability in the Heisenberg group (of codimension 1 sets) Katrin F¨ assler University of Fribourg, Switzerland Joint work with Vasileios Chousionis and Tuomas Orponen

  3. The Heisenberg group H 1 = ( R 3 , ∗ ) d ( p , q ) = � q − 1 ∗ p � , where � ( x , y , t ) � = max {| ( x , y ) | , | t | 1 / 2 } The resulting space ( H 1 , d ) has Hausdorff dimension 4.

  4. Rectifiability in H 1

  5. Rectifiability in H 1 L. Ambrosio and B. Kirchheim, 2000 Let k ≥ 2. If f : A ⊆ R k → H 1 is Lipschitz, then H k ( f ( A )) = 0.

  6. Rectifiability in H 1 L. Ambrosio and B. Kirchheim, 2000 Let k ≥ 2. If f : A ⊆ R k → H 1 is Lipschitz, then H k ( f ( A )) = 0. B. Franchi, R. Serapioni, and F. Serra Cassano, 2001–. . . In H 1 , consider an alternative to Federer’s definition of 3-rectifiability, for instance using intrinsic Lipschitz graphs .

  7. Rectifiability in H 1 L. Ambrosio and B. Kirchheim, 2000 Let k ≥ 2. If f : A ⊆ R k → H 1 is Lipschitz, then H k ( f ( A )) = 0. B. Franchi, R. Serapioni, and F. Serra Cassano, 2001–. . . In H 1 , consider an alternative to Federer’s definition of 3-rectifiability, for instance using intrinsic Lipschitz graphs . Goal: study quantitative rectifiability in H 1 (for codimension 1) (low dimensional sets: Franchi-Ferrari-Pajot, Juillet, Li-Schul, Hahlomaa) Motivation: uniform rectifiability in R n (G. David and S. Semmes).

  8. Towards the definition of intrinsic Lipschitz graphs Write H 1 = W ∗ V , where W - vertical 2-d subspace in R 3 , V - perpendicular 1-d horizontal subspace.

  9. Towards the definition of intrinsic Lipschitz graphs Write H 1 = W ∗ V , where W - vertical 2-d subspace in R 3 , V - perpendicular 1-d horizontal subspace. Heisenberg projections π W : H 1 → W , p = p W ∗ p V �→ p W . Vertical projections: Horizontal projections: π V : H 1 → V , p = p W ∗ p V �→ p V .

  10. Towards the definition of intrinsic Lipschitz graphs Write H 1 = W ∗ V , where W - vertical 2-d subspace in R 3 , V - perpendicular 1-d horizontal subspace. Heisenberg projections π W : H 1 → W , p = p W ∗ p V �→ p W . Vertical projections: Horizontal projections: π V : H 1 → V , p = p W ∗ p V �→ p V . Heisenberg cone C W ( α ) := { p ∈ H 1 : � π W ( p ) � ≤ α � π V ( p ) �} .

  11. Intrinsic Lipschitz functions Intrinsic L -Lipschitz graph Γ ⊂ H 1 such that ( p ∗ C W ( 1 L )) ∩ Γ = { p } , for all p ∈ Γ .

  12. Intrinsic Lipschitz functions Intrinsic L -Lipschitz graph Γ ⊂ H 1 such that ( p ∗ C W ( 1 L )) ∩ Γ = { p } , for all p ∈ Γ . Intrinsic L -Lipschitz function φ : A ⊆ W → V such that Γ φ := { w ∗ φ ( w ) : w ∈ A } is an intrinsic L -Lipschitz graph. ( φ is in general not metrically Lipschitz!)

  13. The main result Theorem The following are equivalent for an Ahlfors 3 -regular E ⊂ H 1 : 1 big pieces of intrinsic Lipschitz graphs 2 big vertical projections + weak geometric lemma for vertical β ’s.

  14. The main result Theorem The following are equivalent for an Ahlfors 3 -regular E ⊂ H 1 : 1 big pieces of intrinsic Lipschitz graphs 2 big vertical projections + weak geometric lemma for vertical β ’s. big pieces of intrinsic Lipschitz graphs : ∃ L ≥ 1 , θ > 0: ∀ x ∈ E , 0 < R ≤ diam ( E ) ∃ Γ intrinsic L -Lipschitz: H 3 ( E ∩ Γ ∩ B ( x , R )) ≥ θ R 3 .

  15. The main result Theorem The following are equivalent for an Ahlfors 3 -regular E ⊂ H 1 : 1 big pieces of intrinsic Lipschitz graphs 2 big vertical projections + weak geometric lemma for vertical β ’s. big pieces of intrinsic Lipschitz graphs : ∃ L ≥ 1 , θ > 0: ∀ x ∈ E , 0 < R ≤ diam ( E ) ∃ Γ intrinsic L -Lipschitz: H 3 ( E ∩ Γ ∩ B ( x , R )) ≥ θ R 3 . big vertical projections : ∃ δ > 0: ∀ x ∈ E , 0 < R ≤ diam E ∃ W vertical: L 2 ( π W ( E ∩ B ( x , R ))) ≥ δ R 3

  16. The main result Theorem The following are equivalent for an Ahlfors 3 -regular E ⊂ H 1 : 1 big pieces of intrinsic Lipschitz graphs 2 big vertical projections + weak geometric lemma for vertical β ’s. big pieces of intrinsic Lipschitz graphs : ∃ L ≥ 1 , θ > 0: ∀ x ∈ E , 0 < R ≤ diam ( E ) ∃ Γ intrinsic L -Lipschitz: H 3 ( E ∩ Γ ∩ B ( x , R )) ≥ θ R 3 . big vertical projections : ∃ δ > 0: ∀ x ∈ E , 0 < R ≤ diam E ∃ W vertical: L 2 ( π W ( E ∩ B ( x , R ))) ≥ δ R 3 dist ( y , z ∗ W ) vertical β -numbers : β ( B ) := inf W , z sup y ∈ B ∩ E . rad ( B )

  17. The main result Theorem The following are equivalent for an Ahlfors 3 -regular E ⊂ H 1 : 1 big pieces of intrinsic Lipschitz graphs 2 big vertical projections + weak geometric lemma for vertical β ’s. big pieces of intrinsic Lipschitz graphs : ∃ L ≥ 1 , θ > 0: ∀ x ∈ E , 0 < R ≤ diam ( E ) ∃ Γ intrinsic L -Lipschitz: H 3 ( E ∩ Γ ∩ B ( x , R )) ≥ θ R 3 . big vertical projections : ∃ δ > 0: ∀ x ∈ E , 0 < R ≤ diam E ∃ W vertical: L 2 ( π W ( E ∩ B ( x , R ))) ≥ δ R 3 dist ( y , z ∗ W ) vertical β -numbers : β ( B ) := inf W , z sup y ∈ B ∩ E . rad ( B ) weak geometric lemma : ∀ ε > 0 , x ∈ E , R > 0 � R � χ { ( y , s ) ∈ E × R + : β ( B ( y , s )) ≥ ε } ( y , s ) d H 3 ( y ) d s s � ε R 3 . 0 E ∩ B ( x , R )

  18. Properties of intrinsic Lipschitz functions B. Franchi, R. Serapioni, F. Serra Cassano (2011); A. Naor, R. Young (2017) : Properties of intrinsic L -Lipschitz φ : A ⊆ W → V

  19. Properties of intrinsic Lipschitz functions B. Franchi, R. Serapioni, F. Serra Cassano (2011); A. Naor, R. Young (2017) : Properties of intrinsic L -Lipschitz φ : A ⊆ W → V p ∗ Γ φ is intrinsic L -Lipschitz ∀ p ∈ H 1

  20. Properties of intrinsic Lipschitz functions B. Franchi, R. Serapioni, F. Serra Cassano (2011); A. Naor, R. Young (2017) : Properties of intrinsic L -Lipschitz φ : A ⊆ W → V p ∗ Γ φ is intrinsic L -Lipschitz ∀ p ∈ H 1 φ can be extended to an L ′ ( L )-intrinsic Lipschitz function W → V

  21. Properties of intrinsic Lipschitz functions B. Franchi, R. Serapioni, F. Serra Cassano (2011); A. Naor, R. Young (2017) : Properties of intrinsic L -Lipschitz φ : A ⊆ W → V p ∗ Γ φ is intrinsic L -Lipschitz ∀ p ∈ H 1 φ can be extended to an L ′ ( L )-intrinsic Lipschitz function W → V Γ φ is Ahlfors-3-regular with constant depending on L (for A = W )

  22. Properties of intrinsic Lipschitz functions B. Franchi, R. Serapioni, F. Serra Cassano (2011); A. Naor, R. Young (2017) : Properties of intrinsic L -Lipschitz φ : A ⊆ W → V p ∗ Γ φ is intrinsic L -Lipschitz ∀ p ∈ H 1 φ can be extended to an L ′ ( L )-intrinsic Lipschitz function W → V Γ φ is Ahlfors-3-regular with constant depending on L (for A = W ) φ is intrinsically differentiable in L 2 a.e. w ∈ A , with intrinsic differential d φ w : W → V , d φ w ( y , t ) = ∇ φ φ ( w ) y , Intrinsically differentiable : (for φ (0) = 0) ∃ d φ 0 : W → V , intrinsic linear: | φ ( y , t ) − d φ 0 ( y , t ) | = o ( � ( y , t ) � ); the general definition is by left-translation of the graph

  23. Properties of intrinsic Lipschitz functions B. Franchi, R. Serapioni, F. Serra Cassano (2011); A. Naor, R. Young (2017) : Properties of intrinsic L -Lipschitz φ : A ⊆ W → V p ∗ Γ φ is intrinsic L -Lipschitz ∀ p ∈ H 1 φ can be extended to an L ′ ( L )-intrinsic Lipschitz function W → V Γ φ is Ahlfors-3-regular with constant depending on L (for A = W ) φ is intrinsically differentiable in L 2 a.e. w ∈ A , with intrinsic differential d φ w : W → V , d φ w ( y , t ) = ∇ φ φ ( w ) y , φ has bounded intrinsic gradient �∇ φ φ � ∞ ≤ L

  24. Properties of intrinsic Lipschitz functions B. Franchi, R. Serapioni, F. Serra Cassano (2011); A. Naor, R. Young (2017) : Properties of intrinsic L -Lipschitz φ : A ⊆ W → V p ∗ Γ φ is intrinsic L -Lipschitz ∀ p ∈ H 1 φ can be extended to an L ′ ( L )-intrinsic Lipschitz function W → V Γ φ is Ahlfors-3-regular with constant depending on L (for A = W ) φ is intrinsically differentiable in L 2 a.e. w ∈ A , with intrinsic differential d φ w : W → V , d φ w ( y , t ) = ∇ φ φ ( w ) y , φ has bounded intrinsic gradient �∇ φ φ � ∞ ≤ L

  25. Proof: Intrinsic Lipschitz graph ⇒ WGL Let Γ = Γ φ be the graph of an intrinsic Lipschitz function φ over W .

  26. Proof: Intrinsic Lipschitz graph ⇒ WGL Let Γ = Γ φ be the graph of an intrinsic Lipschitz function φ over W . First attempt to prove WGL for Γ Γ ∩ B ( y , s ) is far from a vertical plane ? ⇒ gradient of φ fluctuates significantly in Γ ∩ B ( y , s ) ⇒ (with L ∞ bound for gradient) WGL.

  27. Proof: Intrinsic Lipschitz graph ⇒ WGL Let Γ = Γ φ be the graph of an intrinsic Lipschitz function φ over W . First attempt to prove WGL for Γ Γ ∩ B ( y , s ) is far from a vertical plane ? ⇒ gradient of φ fluctuates significantly in Γ ∩ B ( y , s ) ⇒ (with L ∞ bound for gradient) WGL. This argument does not work for the intrinsic gradient!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend