geometric control and homotopic methods for solving a
play

Geometric Control and Homotopic Methods for solving a Bang-Singular - PowerPoint PPT Presentation

Geometric Control and Homotopic Methods for solving a Bang-Singular problem Applied and Numerical Optimal Control Spring School & Workshop, Ensta ParisTech O. Cots 23-27 April 2012 O. Cots (IMB Bourgogne) Results on contrast problem


  1. Geometric Control and Homotopic Methods for solving a Bang-Singular problem Applied and Numerical Optimal Control Spring School & Workshop, Ensta ParisTech O. Cots 23-27 April 2012 O. Cots (IMB Bourgogne) Results on contrast problem April 2012 1 / 40

  2. Introduction - Collaborations Figure: (LHS) Hard pulse of 90 ◦ . (RHS) Optimal solution. – Bernard Bonnard (Univ. Bourgogne) – Jean-Baptiste Caillau (Univ. Bourgogne) – Joseph Gergaud (N7 - IRIT) – Steffen J. Glaser (Univ. Munich) – Dominique Sugny (Univ. Bourgogne) – . . . O. Cots (IMB Bourgogne) Results on contrast problem April 2012 2 / 40

  3. Contrast problem | q 2 ( t f ) | 2 = � y 2 2 ( t f ) + z 2 �  2 ( t f ) → max   q i = ( y i , z i ) , | q i | ≤ 1 , i = 1 , 2     � ˙ = − Γ 1 y 1 − y 1 u z 1     ˙ = γ 1 ( 1 − z 1 ) + γ i = 1 / ( 32 . 3 T i 1 . 10 − 3 ) z 1 u y 1    � ( P ) ˙ = − Γ 2 y 2 − Γ i = 1 / ( 32 . 3 T i 2 . 10 − 3 ) y 2 u z 2 z 2 ˙ = γ 2 ( 1 − z 2 ) + u y 2      | u | ≤ 2 π    q 1 ( 0 ) = ( 0 , 1 ) = q 2 ( 0 )      q 1 ( t f ) = ( 0 , 0 ) Spin 1 ( y 1 , z 1 ) - Deoxygenated blood : T 11 = 1350 ms, T 12 = 50 ms Spin 2 ( y 2 , z 2 ) - Oxygenated blood : T 21 = 1350 ms, T 22 = 200 ms Spin 1 ( y 1 , z 1 ) - Cerebrospinal fluid : T 11 = 2000 ms, T 12 = 200 ms Spin 2 ( y 2 , z 2 ) - Water : T 21 = 2500 ms, T 22 = 2500 ms Blood: T min = 6 . 7980978 Fluid: T min = 20 . 2301921 O. Cots (IMB Bourgogne) Results on contrast problem April 2012 3 / 40

  4. Pontryagin Maximum Principle We have a (smooth) Mayer problem of the form: q = ( q 1 , q 2 ) ∈ R 4 , u ∈U c ( q ( t f )) , q = F ( q ) + uG ( q ) , ˙ | u | ≤ 2 π, u ∈ R , min where y 2 2 ( t f ) + z 2 c ( q ( t f )) = − � 2 ( t f ) � i = 1 , 2 ( − Γ i y i ) ∂ ∂ y i + ( γ i ( 1 − z i )) ∂ F ( q ) = � ∂ z i i = 1 , 2 − z i ∂ ∂ y i + y i ∂ G ( q ) = � ∂ z i The Hamiltonian is: H ( q , p , u ) = � p , F ( q ) + uG ( q ) � � u = 2 π sign ( H G ) is bang if H G � = 0 And the Maximum Principle gives: u is singular if H G = 0 The boundary conditions are: q 1 ( t f ) = 0 (zero magnetization of the first spin) p 0 ≤ 0 . p 2 ( t f ) = − 2 p 0 q 2 ( t f ) , O. Cots (IMB Bourgogne) Results on contrast problem April 2012 4 / 40

  5. Simplest possible solution The north pole N = (( 0 , 1 ) , ( 0 , 1 )) = x ( 0 ) , is an equilibrium point for the singular control system ( u s = 0 ): start with a bang. Due to symmetry of revolution: the first bang is either u = + 2 π or u = − 2 π . A bang solution amounts roughly to a rotation of each plane ( y i , z i ) around 0 . At t f , q 1 ( t f ) = 0 , and there is no improvement by rotation (because T 21 > T 22 ) of the contrast: no bang at the end. Lemma The simplest BC-extremal in the contrast problem is of the form B + S . 1 1 6 5 0.5 0.5 4 z 1 0 z 2 0 3 2 −0.5 −0.5 1 0 −1 −1 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 y 1 y 2 0 0.2 0.4 0.6 0.8 1 Figure: Trajectories of spin 1, 2 and the control associated for the Blood case. O. Cots (IMB Bourgogne) Results on contrast problem April 2012 5 / 40

  6. Singular extremals The Hamiltonian is H ( q , p , u ) = H F ( q , p ) + u H G ( q , p ) , H F := � p , F � , H G := � p , G � . Let z ( · ) = ( q ( · ) , p ( · )) be a singular extremal, then H G ( z ( . )) = 0 identically. Differentiating with respect to time,  H G ( z ( t ))= 0   (2 constraints) dH G dt ( z ( t )) = { H , H F } ( z ( t )) = { H G , H F } ( z ( t ))= 0 d 2 H G dt 2 ( z ( t )) = {{ H G , H F } , H F } ( z ( t )) + u s ( t ) {{ H G , H F } , H G } ( z ( t )) = 0 Besides, + we can restrict p to H s = h because of the homogeneity : u s ( q , α p ) = u s ( q , p ) . + generalized Legendre-Clebsch condition has to be satisfied that is {{ H G , H F } , H G } ≥ 0 . ⇒ for each q ( 0 ) ∈ R 4 , p ( 0 ) ∈ R 4 lives in half a straight line and the singular flow starting from q ( 0 ) is a surface of dimension 2. O. Cots (IMB Bourgogne) Results on contrast problem April 2012 6 / 40

  7. Singular extremals in the Fluid case 1 1 0.5 0.5 z1 z2 0 0 −0.5 −0.5 −1 −1 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 y1 y2 Figure: Singular surface with blowing up control in red ( {{ H G , H F } , H G } tends to 0 ). O. Cots (IMB Bourgogne) Results on contrast problem April 2012 7 / 40

  8. Singular extremals in the Fluid case 1 0.06 0.04 0.02 0.5 0 −0.02 z1 z2 0 −0.04 −0.06 −0.5 −0.08 −0.1 −0.12 −1 −0.1 −0.05 0 0.05 −1 −0.5 0 0.5 1 y1 y2 Figure: Zoom of singular surface with blowing up control in red ( {{ H G , H F } , H G } tends to 0 ). O. Cots (IMB Bourgogne) Results on contrast problem April 2012 8 / 40

  9. Local optimality of singular arcs Définition Let z ( · ) be a reference singular solution of # — H s on [ 0 , t f ] . The variational equation on the tangent space to Σ s := { H G = { H F , H G } = 0 } δ z = d # ˙ — H s ( z ( t )) δ z dH G = d { H F , H G } = 0 is called Jacobi equation. A Jacobi field J ( t ) = ( δ q , δ p ) is a non-zero solution of Jacobi equation. It is said semi-vertical at time t if δ q ( t ) ∈ R G ( q ( t )) . A time t ∈ ( 0 , t f ] is said to be conjugate if there exists a Jacobi field J ( t ) semi-vertical at 0 and t . Theorem Under strict Legendre-Clebsch condition (i.e. {{ H G , H F } , H G } > 0 ) and additional generic assumptions, the absence of conjugate times on ( 0 , t f ) is necessary for local optimality of a singular arc. O. Cots (IMB Bourgogne) Results on contrast problem April 2012 9 / 40

  10. Conjugate points fot singular extremals in the Fluid case −0.6 0.02 −0.65 0 −0.7 −0.02 z1 z2 −0.04 −0.75 −0.06 −0.8 −0.08 −0.85 −0.1 −0.1 −0.05 0 0.05 −0.3 −0.2 −0.1 0 y2 y1 Figure: Zoom of singular surface with conjugate points in red. ⇒ We can expect more intricate structures than BS in the fluid case. O. Cots (IMB Bourgogne) Results on contrast problem April 2012 10 / 40

  11. The limit case t f = T min . Single spin problem (see [BCG + 11])  t f → min  q = ( y , z ) , | q | ≤ 1   � ˙    = − Γ y − y u z   3 γ  < Γ ( P 1 ) ˙ = γ ( 1 − z ) + z u y 2    | u | ≤ 2 π  q ( 0 ) = ( 0 , 1 )     q ( t f ) = ( 0 , 0 )  The dynamics: q = F ( q ) ˙ + u G ( q ) The Hamiltonian: H ( q , u , p ) = H F ( q , p ) + u H G ( q , p ) , H i = < p , F i > , i = F , G ⇒ The singular extremals are those contained in H G = 0 . [BCG + 11] B. Bonnard, O. Cots, S. Glaser, M. Lapert, and D. Sugny. Geometric optimal control of the contrast imaging problem in nuclear magnetic resonance. math.u-bourgogne.fr , 2011. O. Cots (IMB Bourgogne) Results on contrast problem April 2012 11 / 40

  12. Single spin: singular extremals ⇒ The singular extremals are those contained in H G = 0 . � = < p , G > = 0 H G ⇒ det ( G , [ G , F ]) = y ( − 2 δ z + γ ) = 0 ˙ = < p , [ G , F ] > = H G 0 with δ = γ − Γ . γ The singular lines are y = 0 and z 0 = 2 δ . The singular control u s ( q , p ) is computed from ¨ H G = {{ H G , H F } , H F } ( z ) + u s {{ H G , H F } , H G } ( z ) = 0 . γ Horizontal line ( z 0 = 2 δ ): optimal, according to Generalized Legendre-Clebsch condition (see [BC03]) and u s ( q ) = γ ( 2 Γ − γ ) / ( 2 δ y ) ⇒ u s ∈ L 1 , u s / ∈ L 2 Vertical line ( y = 0 ): optimal for z 0 < z < 1 (GLC) and u s ( q ) = 0 . [BC03] B. Bonnard and M. Chyba. Singular trajectories and their role in control theory, mathématiques & applications, vol. 40. lavoisier.fr , Jan 2003. O. Cots (IMB Bourgogne) Results on contrast problem April 2012 12 / 40

  13. Single spin: global synthesis Red: bang ( u = 2 π ) Blue: bang ( u = − 2 π ) Green: singular ( u = u s ) B: saturation O. Cots (IMB Bourgogne) Results on contrast problem April 2012 13 / 40

  14. Summary: single spin => contrast problem Solutions of the contrast problem are made of Bang-Singular sequences. We get T min . The solution for the limit case t f = T min is B + SB + S . To solve the contrast problem, we use an indirect method (multiple shooting) ⇒ we need to know the structure a priori. ⇒ we use an homotopic approach to capture the structure and initialize the multiple shooting method. O. Cots (IMB Bourgogne) Results on contrast problem April 2012 14 / 40

  15. Homotopy � t f 0 | u | 2 − λ ( t ) dt → min  � y 2 2 ( t f ) + z 2 � − 2 ( t f ) + ( 1 − λ )   q i = ( y i , z i ) , | q i | ≤ 1 , i = 1 , 2     � y 1 ˙ = − Γ 1 y 1 − u z 1     z 1 ˙ = γ 1 ( 1 − z 1 ) + u y 1  γ i = 1 / ( 32 . 3 T i 1 )   ( P λ ) � ˙ y 2 = − Γ 2 y 2 − u z 2 Γ i = 1 / ( 32 . 3 T i 2 ) ˙ = γ 2 ( 1 − z 2 ) + z 2 u y 2      | u | ≤ 2 π    q 1 ( 0 ) = ( 0 , 1 ) = q 2 ( 0 )     q 1 ( t f ) = ( 0 , 0 )  � t f � y 2 2 ( t f ) + z 2 � 0 | u | 2 − λ ( t ) dt → min Homotopy ( P λ ) : − 2 ( t f ) + ( 1 − λ ) The Hamiltonian: H ( q , u , p , λ ) = H F ( q , p ) + u H G ( q , p ) + ( 1 − λ ) | u | 2 − λ ( P λ ) -extremals are admissible for ( P ) . O. Cots (IMB Bourgogne) Results on contrast problem April 2012 15 / 40

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend