geometric aspects of quantum computing
play

Geometric aspects of quantum computing Maris Ozols University of - PowerPoint PPT Presentation

Geometric aspects of quantum computing Maris Ozols University of Waterloo Department of C&O December 10, 2007 Qubit state Qubit | = | 0 + | 1 , where , C and | | 2 + | | 2 = 1 . Qubit state Qubit |


  1. Geometric aspects of quantum computing Maris Ozols University of Waterloo Department of C&O December 10, 2007

  2. Qubit state Qubit | ψ � = α | 0 � + β | 1 � , where α, β ∈ C and | α | 2 + | β | 2 = 1 .

  3. Qubit state Qubit | ψ � = α | 0 � + β | 1 � , where α, β ∈ C and | α | 2 + | β | 2 = 1 . Parametrization We can find θ ( 0 ≤ θ ≤ π ) and ϕ ( 0 ≤ ϕ < 2 π ), such that � cos θ � 2 | ψ � = . e iϕ sin θ 2

  4. Qubit state Qubit | ψ � = α | 0 � + β | 1 � , where α, β ∈ C and | α | 2 + | β | 2 = 1 . Parametrization We can find θ ( 0 ≤ θ ≤ π ) and ϕ ( 0 ≤ ϕ < 2 π ), such that � cos θ � 2 | ψ � = . e iϕ sin θ 2 Density matrix The corresponding density matrix is: � 1 + cos θ e − iϕ sin θ � ρ = | ψ � � ψ | = 1 . e iϕ sin θ 1 − cos θ 2

  5. Bloch sphere Bijection between S 2 and C P 1 � cos θ � | ψ � = 2 e iϕ sin θ 2 �  x = sin θ cos ϕ   y = sin θ sin ϕ   z = cos θ 0 ≤ θ ≤ π and 0 ≤ ϕ < 2 π

  6. Pauli matrices Density matrix of a qubit ρ = 1 r · � 2 ( I + � σ ) , � r = ( x, y, z ) , � σ = ( σ x , σ y , σ z ) .

  7. Pauli matrices Density matrix of a qubit ρ = 1 r · � 2 ( I + � σ ) , � r = ( x, y, z ) , � σ = ( σ x , σ y , σ z ) . Pauli matrices � � � � � � � � 0 − i 1 0 1 0 0 1 I = , σ x = , σ y = , σ z = . 0 1 1 0 0 − 1 i 0

  8. Pauli matrices Density matrix of a qubit ρ = 1 r · � 2 ( I + � σ ) , � r = ( x, y, z ) , � σ = ( σ x , σ y , σ z ) . Pauli matrices � � � � � � � � 0 − i 1 0 1 0 0 1 I = , σ x = , σ y = , σ z = . 0 1 1 0 0 − 1 i 0 Inner product |� ψ 1 | ψ 2 �| 2

  9. Pauli matrices Density matrix of a qubit ρ = 1 r · � 2 ( I + � σ ) , � r = ( x, y, z ) , � σ = ( σ x , σ y , σ z ) . Pauli matrices � � � � � � � � 0 − i 1 0 1 0 0 1 I = , σ x = , σ y = , σ z = . 0 1 1 0 0 − 1 i 0 Inner product |� ψ 1 | ψ 2 �| 2 = Tr( ρ 1 ρ 2 )

  10. Pauli matrices Density matrix of a qubit ρ = 1 r · � 2 ( I + � σ ) , � r = ( x, y, z ) , � σ = ( σ x , σ y , σ z ) . Pauli matrices � � � � � � � � 0 − i 1 0 1 0 0 1 I = , σ x = , σ y = , σ z = . 0 1 1 0 0 − 1 i 0 Inner product |� ψ 1 | ψ 2 �| 2 = Tr( ρ 1 ρ 2 ) = 1 2(1 + � r 1 · � r 2 ) .

  11. Pauli matrices Density matrix of a qubit ρ = 1 r · � 2 ( I + � σ ) , � r = ( x, y, z ) , σ = ( σ x , σ y , σ z ) . � Pauli matrices � � � � � � � � 0 − i 1 0 1 0 0 1 I = , σ x = , σ y = , σ z = . 0 1 1 0 0 − 1 i 0 Inner product 2 = Tr( ρ 1 ρ 2 ) = 1 |� ψ 1 | ψ 2 �| 2(1 + � r 1 · � r 2 ) . � �� � 0

  12. Pauli matrices Density matrix of a qubit ρ = 1 r · � 2 ( I + � σ ) , � r = ( x, y, z ) , � σ = ( σ x , σ y , σ z ) . Pauli matrices � � � � � � � � 0 − i 1 0 1 0 0 1 I = , σ x = , σ y = , σ z = . 0 1 1 0 0 − 1 i 0 Inner product 2 = Tr( ρ 1 ρ 2 ) = 1 |� ψ 1 | ψ 2 �| 2(1 + � r 1 · � � �� � ) . r 2 � �� � 0

  13. Pauli matrices Density matrix of a qubit ρ = 1 r · � 2 ( I + � σ ) , � r = ( x, y, z ) , � σ = ( σ x , σ y , σ z ) . Pauli matrices � � � � � � � � 0 − i 1 0 1 0 0 1 I = , σ x = , σ y = , σ z = . 0 1 1 0 0 − 1 i 0 Inner product 2 = Tr( ρ 1 ρ 2 ) = 1 |� ψ 1 | ψ 2 �| 2(1 + � r 1 · � ) . r 2 � �� � � �� � − 1 0

  14. General 2 × 2 unitary Rotation around z -axis � � Consider the action of U = | 0 � � 0 | + e iϕ | 1 � � 1 | = 1 0 : 0 e iϕ

  15. General 2 × 2 unitary Rotation around z -axis � � Consider the action of U = | 0 � � 0 | + e iϕ | 1 � � 1 | = 1 0 : 0 e iϕ U | 1 � = e iϕ | 1 � . U | 0 � = | 0 � ,

  16. General 2 × 2 unitary Rotation around z -axis � � Consider the action of U = | 0 � � 0 | + e iϕ | 1 � � 1 | = 1 0 : 0 e iϕ U | 1 � = e iϕ | 1 � . U | 0 � = | 0 � , Now if we act on | 0 � + | 1 � 2 , we get: √ � 1 = | 0 � + e iϕ | 1 � � U | 0 � + | 1 � 1 √ √ = √ . e iϕ 2 2 2

  17. General 2 × 2 unitary Rotation around z -axis � � Consider the action of U = | 0 � � 0 | + e iϕ | 1 � � 1 | = 1 0 : 0 e iϕ U | 1 � = e iϕ | 1 � . U | 0 � = | 0 � , Now if we act on | 0 � + | 1 � 2 , we get: √ � 1 = | 0 � + e iϕ | 1 � � U | 0 � + | 1 � 1 √ √ = √ . e iϕ 2 2 2 General rotation Rotation around � r by angle ϕ : r ) + e iϕ ρ ( − � U ( � r, ϕ ) = ρ ( � r ) .

  18. Some curiosities

  19. Some curiosities Quaternions i 2 = j 2 = k 2 = ijk = − 1 .

  20. Some curiosities Quaternions i 2 = j 2 = k 2 = ijk = − 1 . Bijection (1 , i, j, k ) ⇐ ⇒ ( I, iσ z , iσ y , iσ x ) .

  21. Some curiosities Quaternions i 2 = j 2 = k 2 = ijk = − 1 . Bijection (1 , i, j, k ) ⇐ ⇒ ( I, iσ z , iσ y , iσ x ) .

  22. Some curiosities Quaternions i 2 = j 2 = k 2 = ijk = − 1 . Bijection (1 , i, j, k ) ⇐ ⇒ ( I, iσ z , iσ y , iσ x ) . Finite field of order 4 � 0 , 1 , ω, ω 2 � ω 2 ≡ ω + 1 . F 4 = ( , + , ∗ ) , x ≡ − x,

  23. Some curiosities Quaternions i 2 = j 2 = k 2 = ijk = − 1 . Bijection (1 , i, j, k ) ⇐ ⇒ ( I, iσ z , iσ y , iσ x ) . Finite field of order 4 � 0 , 1 , ω, ω 2 � ω 2 ≡ ω + 1 . F 4 = ( , + , ∗ ) , x ≡ − x, Bijection (0 , 1 , ω, ω 2 ) ⇐ ⇒ ( I, σ x , σ z , σ y ) .

  24. Some curiosities Quaternions i 2 = j 2 = k 2 = ijk = − 1 . Bijection (1 , i, j, k ) ⇐ ⇒ ( I, iσ z , iσ y , iσ x ) . Finite field of order 4 � 0 , 1 , ω, ω 2 � ω 2 ≡ ω + 1 . F 4 = ( , + , ∗ ) , x ≡ − x, Bijection (up to phase) (0 , 1 , ω, ω 2 ) ⇐ ⇒ ( I, σ x , σ z , σ y ) .

  25. Some curiosities Quaternions i 2 = j 2 = k 2 = ijk = − 1 . Bijection (1 , i, j, k ) ⇐ ⇒ ( I, iσ z , iσ y , iσ x ) . Finite field of order 4 � 0 , 1 , ω, ω 2 � ω 2 ≡ ω + 1 . F 4 = ( , + , ∗ ) , x ≡ − x, Bijection (up to phase) (0 , 1 , ω, ω 2 ) ⇐ ⇒ ( I, σ x , σ z , σ y ) .

  26. More curiosities

  27. More curiosities Clifford group The Clifford group of a qubit is C = { U | σ ∈ P ⇒ UσU † ∈ P } , where P = {± I, ± σ x , ± σ y , ± σ z } – the set of Pauli matrices.

  28. More curiosities Clifford group The Clifford group of a qubit is C = { U | σ ∈ P ⇒ UσU † ∈ P } , where P = {± I, ± σ x , ± σ y , ± σ z } – the set of Pauli matrices. Cuboctahedron

  29. More curiosities Clifford group The Clifford group of a qubit is C = { U | σ ∈ P ⇒ UσU † ∈ P } , where P = {± I, ± σ x , ± σ y , ± σ z } – the set of Pauli matrices. Cuboctahedron

  30. Counting dimensions

  31. Counting dimensions Density matrix

  32. Counting dimensions Density matrix 1. hermitian: ρ † = ρ ,

  33. Counting dimensions Density matrix 1. hermitian: ρ † = ρ , 2. unit trace: Tr ρ = 1 ,

  34. Counting dimensions Density matrix 1. hermitian: ρ † = ρ , 2. unit trace: Tr ρ = 1 , 3. positive semi-definite: ρ ≥ 0 .

  35. Counting dimensions Density matrix 1. hermitian: ρ † = ρ , 2. unit trace: Tr ρ = 1 , 3. positive semi-definite: ρ ≥ 0 . Degrees of freedom for ρ For an n × n density matrix there are n 2 − 1 degrees of freedom.

  36. Counting dimensions Density matrix 1. hermitian: ρ † = ρ , 2. unit trace: Tr ρ = 1 , 3. positive semi-definite: ρ ≥ 0 . Degrees of freedom for ρ For an n × n density matrix there are n 2 − 1 degrees of freedom. Degrees of freedom for | ψ � A pure quantum state | ψ � ∈ C n has 2( n − 1) degrees of freedom.

  37. Qutrit Qutrit state | ψ � = α | 0 � + β | 1 � + γ | 2 � .

  38. Qutrit Qutrit state | ψ � = α | 0 � + β | 1 � + γ | 2 � . Gell-Mann matrices � 0 1 0 � 0 − i 0 � 1 0 0 � � � λ 1 = λ 2 = λ 3 = , , , 1 0 0 0 − 1 0 i 0 0 0 0 0 0 0 0 0 0 0 � 0 0 1 � 0 0 − i � 0 0 0 � � � λ 4 = , λ 5 = , λ 6 = , 0 0 0 0 0 0 0 0 1 1 0 0 i 0 0 0 1 0 � 0 0 0 � 1 0 0 � � 1 λ 7 = λ 8 = , √ . 0 0 − i 0 1 0 3 0 0 − 2 0 i 0

  39. Qutrit Qutrit state | ψ � = α | 0 � + β | 1 � + γ | 2 � . Gell-Mann matrices � 0 1 0 � 0 − i 0 � 1 0 0 � � � λ 1 = λ 2 = λ 3 = , , , 1 0 0 0 − 1 0 i 0 0 0 0 0 0 0 0 0 0 0 � 0 0 1 � 0 0 − i � 0 0 0 � � � λ 4 = , λ 5 = , λ 6 = , 0 0 0 0 0 0 0 0 1 1 0 0 i 0 0 0 1 0 � 0 0 0 � 1 0 0 � � 1 λ 7 = λ 8 = , √ . 0 0 − i 0 1 0 3 0 0 − 2 0 i 0 Density matrix √ ρ = | ψ � � ψ | = 1 r · � r ∈ R 8 . 3( I + 3 � λ ) , �

  40. Qutrit Qutrit state | ψ � = α | 0 � + β | 1 � + γ | 2 � . Gell-Mann matrices � 0 1 0 � 0 − i 0 � 1 0 0 � � � λ 1 = λ 2 = λ 3 = , , , 1 0 0 0 − 1 0 i 0 0 0 0 0 0 0 0 0 0 0 � 0 0 1 � 0 0 − i � 0 0 0 � � � λ 4 = , λ 5 = , λ 6 = , 0 0 0 0 0 0 0 0 1 1 0 0 i 0 0 0 1 0 � 0 0 0 � 1 0 0 � � 1 λ 7 = λ 8 = , √ . 0 0 − i 0 1 0 3 0 0 − 2 0 i 0 Density matrix √ ρ = | ψ � � ψ | = 1 r · � r ∈ R 8 . 3( I + 3 � λ ) , �

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend