generalized inversion sequences
play

Generalized Inversion Sequences Carla D. Savage Department of - PowerPoint PPT Presentation

Generalized Inversion Sequences Carla D. Savage Department of Computer Science North Carolina State University CanaDAM 2013 Memorial University of Newfoundland, June 10, 2013 Permutations and Descents S n : set of permutations : { 1 , 2 ,


  1. Generalized Inversion Sequences Carla D. Savage Department of Computer Science North Carolina State University CanaDAM 2013 Memorial University of Newfoundland, June 10, 2013

  2. Permutations and Descents S n : set of permutations π : { 1 , 2 , . . . , n } → { 1 , 2 , . . . , n } Des π : { i ∈ { 1 , . . . n − 1 } | π ( i ) > π ( i + 1 ) } ( descents ) des π : | Des π | , the number of descents. π ∈ S 3 Des π des π 1 2 3 { } 0 1 3 2 { 2 } 1 2 1 3 { 1 } 1 2 3 1 { 2 } 1 3 1 2 { 1 } 1 3 2 1 { 1 , 2 } 2

  3. Permutations and Descents S n : set of permutations π : { 1 , 2 , . . . , n } → { 1 , 2 , . . . , n } Des π : { i ∈ { 1 , . . . n − 1 } | π ( i ) > π ( i + 1 ) } ( descents ) des π : | Des π | , the number of descents. Descent polynomial: π ∈ S 3 Des π des π 1 2 3 { } 0 � x des π E n ( x ) = 1 3 2 { 2 } 1 π ∈ S n 2 1 3 { 1 } 1 2 3 1 { 2 } 1 E 3 ( x ) = 1 + 4 x + x 2 3 1 2 { 1 } 1 3 2 1 { 1 , 2 } 2

  4. Permutations and Descents S n : set of permutations π : { 1 , 2 , . . . , n } → { 1 , 2 , . . . , n } Des π : { i ∈ { 1 , . . . n − 1 } | π ( i ) > π ( i + 1 ) } ( descents ) des π : | Des π | , the number of descents. Descent polynomial: π ∈ S 3 Des π des π 1 2 3 { } 0 � x des π E n ( x ) = 1 3 2 { 2 } 1 π ∈ S n 2 1 3 { 1 } 1 2 3 1 { 2 } 1 E 3 ( x ) = 1 + 4 x + x 2 3 1 2 { 1 } 1 3 2 1 { 1 , 2 } 2 Eulerian polynomials: E n ( x )

  5. The Eulerian polynomials, E n ( x ) � x des π E n ( x ) = π ∈ S n E n ( x ) � ( t + 1 ) n x t = ( 1 − x ) n + 1 t ≥ 0 E n ( x ) z n ( 1 − x ) � = e z ( x − 1 ) − x n ! n ≥ 0

  6. Inversion Sequences I n = { ( e 1 , . . . e n ) ∈ Z n | 0 ≤ e i < i } Encode permutations as inversion sequences φ : S n → I n φ ( π ) = ( e 1 , . . . , e n ) , where e j = |{ i | i < j and π ( i ) > π ( j ) }| . Example: φ ( 4 3 6 5 1 2 ) = ( 0 , 1 , 0 , 1 , 4 , 4 ) .

  7. Inversion Sequences I n = { ( e 1 , . . . e n ) ∈ Z n | 0 ≤ e i < i } Encode permutations as inversion sequences φ : S n → I n φ ( π ) = ( e 1 , . . . , e n ) , where e j = |{ i | i < j and π ( i ) > π ( j ) }| . Example: φ ( 4 3 6 5 1 2 ) = ( 0 , 1 , 0 , 1 , 4 , 4 ) . Claim: φ is a bijection with Des π = Asc φ ( π ) .

  8. Inversion Sequences I n = { ( e 1 , . . . e n ) ∈ Z n | 0 ≤ e i < i } Encode permutations as inversion sequences φ : S n → I n φ ( π ) = ( e 1 , . . . , e n ) , where e j = |{ i | i < j and π ( i ) > π ( j ) }| . Example: φ ( 4 3 6 5 1 2 ) = ( 0 , 1 , 0 , 1 , 4 , 4 ) . Claim: φ is a bijection with Des π = Asc φ ( π ) . What is “ Asc ”?

  9. Ascents What is an “ascent” in an inversion sequence? e i < e i + 1 ?

  10. Ascents What is an “ascent” in an inversion sequence? e i i < e i + 1 e i < e i + 1 ? or i + 1 ?

  11. Ascents What is an “ascent” in an inversion sequence? e i i < e i + 1 e i < e i + 1 ? or i + 1 ? Lemma If 0 ≤ e j < j for all j ≤ n, then for 1 ≤ i < n, e i i < e i + 1 e i < e i + 1 iff i + 1 .

  12. View inversion sequences as lattice points in a (half-open) 1 × 2 × · · · × n box View ascent constraints as hyperplane constraints: 0 < e 1 and e i i < e i + 1 i + 1 , 1 ≤ i < n π ∈ S 3 e ∈ I n Asc e 1 2 3 (0,0,0) { } 1 3 2 (0,0,1) { 2 } 2 1 3 (0,1,0) { 1 } 2 3 1 (0,0,2) { 2 } 3 1 2 (0,1,1) { 1 } 3 2 1 (0,1,2) { 1 , 2 }

  13. s-inversion sequences For any sequence s = ( s 1 , s 2 , . . . , s n ) of positive integers: { ( e 1 , . . . , e n ) ∈ Z n | 0 ≤ e i < s i for 1 ≤ i ≤ n } . I ( s ) = n (lattice points in a half-open s 1 × s 2 × · · · × s n box) � � � I ( s ) � = s 1 s 2 · · · s n � � n

  14. s-inversion sequences For any sequence s = ( s 1 , s 2 , . . . , s n ) of positive integers: { ( e 1 , . . . , e n ) ∈ Z n | 0 ≤ e i < s i for 1 ≤ i ≤ n } . I ( s ) = n An ascent of e is a position i : 1 ≤ i < n and e i e i + 1 < . s i s i + 1 If e 1 > 0 then 0 is an ascent . %pause

  15. s-inversion sequences For any sequence s = ( s 1 , s 2 , . . . , s n ) of positive integers: { ( e 1 , . . . , e n ) ∈ Z n | 0 ≤ e i < s i for 1 ≤ i ≤ n } . I ( s ) = n Example: ( 2 , 4 , 5 ) ∈ I ( 3 , 5 , 7 ) n Asc e = { 0 , 1 } 2 �∈ Asc e since 4 / 5 � < 5 / 7 %pause

  16. Ascent polynomials of s -inversion sequences A ( s ) � x asc e n ( x ) = e ∈ I ( s ) n ( 2 , 4 ) -inversion sequences Ascent sets: { } yellow dot { 0 } blue square { 1 } red diamond { 0 , 1 } black dot A ( 2 , 4 ) ( x ) = 1 + 6 x + x 2 n

  17. Ascent polynomials of s -inversion sequences A ( s ) � x asc e n ( x ) = e ∈ I ( s ) n ( 3 , 5 ) -inversion sequences ( 2 , 4 ) -inversion sequences Ascent sets: { } yellow dot { 0 } blue square { 1 } red diamond { 0 , 1 } black dot A ( 3 , 5 ) ( x ) = 1 + 10 x + 4 x 2 A ( 2 , 4 ) ( x ) = 1 + 6 x + x 2 n n

  18. Call A ( s ) n ( x ) the s-Eulerian polynomial since, when s = ( 1 , 2 , . . . , n ) , x asc e = x des π = E n ( x ) , A ( s ) � � n ( x ) = e ∈ I ( s ) π ∈ S n n the Eulerian polynomial. (Recall bijection φ : S n → I n with Des π = Asc φ ( π ) )

  19. Why s -inversion sequences? • Natural model for combinatorial structures • Can prove general properties of the s -Eulerian polynomials • Surprising results follow using Ehrhart theory • Can be encoded as lecture hall partitions • Lead to a natural refinement of the s -Eulerian polynomials • Help answer questions about lecture hall partitions

  20. sequence s s -Eulerian polynomial 1 + 57 x + 302 x 2 + 302 x 3 + 57 x 4 + x 5 ( 1 , 2 , 3 , 4 , 5 , 6 ) 1 + 237 x + 1682 x 2 + 1682 x 3 + 237 x 4 + x 5 ( 2 , 4 , 6 , 8 , 10 ) 1 + 57 x + 302 x 2 + 302 x 3 + 57 x 4 + x 5 ( 6 , 5 , 4 , 3 , 2 , 1 ) 1 + 20 x + 48 x 2 + 20 x 3 + x 4 ( 1 , 1 , 3 , 2 , 5 , 3 ) 1 + 358 x + 3580 x 2 + 5168 x 3 + 1328 x 4 + 32 x 5 . ( 1 , 3 , 5 , 7 , 9 , 11 ) 1 + 71 x + 948 x 2 + 2450 x 3 + 1411 x 4 + 159 x 5 ( 7 , 2 , 3 , 5 , 4 , 6 )

  21. 1. Signed permutations and ( 2 , 4 , 6 , . . . , 2 n ) -inversion sequences � � � I ( 2 , 4 , 6 ,..., 2 n ) � = 2 n n ! � � n

  22. Signed Permutations B n B n = { ( σ 1 , . . . , σ n ) | ∃ π ∈ S n , ∀ i σ i = ± π ( i ) } π ∈ B n Des π ( 1, 2) { } (-1, 2) { 0 } ( 1,-2) { 1 } (-1,-2) { 0 , 1 } ( 2, 1) { 1 } Des σ = { i ∈ { 0 , . . . , n − 1 } | σ i > σ i + 1 } , (-2, 1) { 0 } ( 2,-1) { 1 } (-2,-1) { 0 } with the convention that σ 0 = 0. descent polynomial: 1 + 6 x + x 2

  23. Signed Permutations B n B n = { ( σ 1 , . . . , σ n ) | ∃ π ∈ S n , ∀ i σ i = ± π ( i ) } ( 2 , 4 ) -inversion sequences π ∈ B n Des π ( 1, 2) { } (-1, 2) { 0 } ( 1,-2) { 1 } (-1,-2) { 0 , 1 } Ascent sets: ( 2, 1) { 1 } { } yellow dot (-2, 1) { 0 } { 0 } blue square ( 2,-1) { 1 } { 1 } red diamond (-2,-1) { 0 } { 0 , 1 } black dot descent polynomial: ascent polynomial: 1 + 6 x + x 2 1 + 6 x + x 2

  24. Theorem (Pensyl, S 2012/13) x des σ = A ( 2 , 4 ,..., 2 n ) � ( x ) . n σ ∈ B n

  25. Theorem (Pensyl, S 2012/13) x des σ = A ( 2 , 4 ,..., 2 n ) � ( x ) . n σ ∈ B n Proof. There is a bijection Θ : B n → I ( 2 , 4 ,..., 2 n ) satisfying n Des σ = Asc Θ( σ ) .

  26. 2. ( s 1 , s 2 , . . . , s n ) -inversion sequences vs. ( s n , s n − 1 , . . . , s 1 ) -inversion sequences Example from table: 1 + 57 x + 302 x 2 + 302 x 3 + 57 x 4 + x 5 A ( 1 , 2 , 3 , 4 , 5 , 6 ) ( x ) = 6 A ( 6 , 5 , 4 , 3 , 2 , 1 ) = ( x ) 6

  27. Theorem (S, Schuster 2012; Liu, Stanley 2012) For any sequence ( s 1 , s 2 , . . . , s n ) of positive integers, A ( s 1 , s 2 ,..., s n ) ( x ) = A ( s n , s n − 1 ,..., s 1 ) ( x ) . n n

  28. Reversing s preserves the ascent polynomial ( 3 , 5 ) -inversion sequences ( 5 , 3 ) -inversion sequences Ascent sets: { } yellow dot { 0 } blue square { 1 } red diamond { 0 , 1 } black dot 1 + 10 x + 4 x 2 1 + 10 x + 4 x 2 but not necessarily the partition into ascent sets

  29. 3. Roots of s -Eulerian polynomials Example from table: ( x ) = 1 + 71 x + 948 x 2 + 2450 x 3 + 1411 x 4 + 159 x 5 A ( 7 , 2 , 3 , 5 , 4 , 6 ) 6 Roots in the intervals: [[ − 19 / 1024 , − 9 / 512 ] , [ − 77 / 1024 , − 19 / 256 ] , [ − 423 / 1024 , − 211 / 512 ] , [ − 1701 / 1024 , − 425 / 256 ] , [ − 3435 / 512 , − 6869 / 1024 ]]

  30. Theorem (S, Visontai 2012) For every sequence s of positive integers, A ( s ) n ( x ) has all real roots.

  31. Theorem (S, Visontai 2012) For every sequence s of positive integers, A ( s ) n ( x ) has all real roots. Corollary (Frobenius 1910; Brenti 1994) The descent polynomials for Coxeter groups of types A and B have all real roots.

  32. Theorem (S, Visontai 2012) For every sequence s of positive integers, A ( s ) n ( x ) has all real roots. Corollary (Frobenius 1910; Brenti 1994) The descent polynomials for Coxeter groups of types A and B have all real roots. New: ([S, Visontai 2013]) Method can be adapted to type D .

  33. Theorem (S, Visontai 2012) For every sequence s of positive integers, A ( s ) n ( x ) has all real roots.

  34. Theorem (S, Visontai 2012) For every sequence s of positive integers, A ( s ) n ( x ) has all real roots. Corollary For any s, the sequence of coefficents of the s-Eulerian polynomial is unimodal and log-concave. Example A ( 7 , 2 , 3 , 5 , 4 , 6 ) ( x ) : 6 1 , 71 , 948 , 2450 , 1411 , 159 , 1

  35. 4. Lecture Hall Polytopes and Ehrhart Theory

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend