generalized faddeev volkov models
play

Generalized FaddeevVolkov models Rinat Kashaev University of Geneva - PowerPoint PPT Presentation

Generalized FaddeevVolkov models Rinat Kashaev University of Geneva RAQIS16 Geneva, August 22-26, 2016 Rinat Kashaev Generalized FaddeevVolkov models Motivation: special functions and integrable lattice models with infinitely many


  1. Generalized Faddeev–Volkov models Rinat Kashaev University of Geneva RAQIS’16 Geneva, August 22-26, 2016 Rinat Kashaev Generalized Faddeev–Volkov models

  2. Motivation: special functions and integrable lattice models with infinitely many local states Notable examples The quantum dilogarithm: the Faddeev–Volkov model (Bazhanov–Mangazeev–Sergeev) The elliptic beta function: a master solution of the quantum Yang–Baxter equation (Spiridonov, Bazhanov–Sergeev) Rinat Kashaev Generalized Faddeev–Volkov models

  3. Review of Faddeev’s quantum dilogarithm ∞ 1 + e 2 π bx + π i b 2 (2 k +1) � Im( b 2 ) > 0 Φ b ( x ) := 1 + e 2 π b − 1 x − π i b − 2 (2 k +1) , k =0 Integral representations e − i 2 xz �� � Φ b ( x ) = exp 4 sinh( zb ) sinh( zb − 1 ) z dz (Faddeev) R + i 0 � i � � d t � e b 2 t +2 π bx + 1 � Φ b ( x ) = exp log (Woronowicz) e t + 1 2 π R ⇒ extension to b ∈ C \ i R Rinat Kashaev Generalized Faddeev–Volkov models

  4. Φ b ( z − i s ) s = b ± 1 Φ b ( z +i s ) = 1 + e 4 π sz , Functional equations: 2 m + 1 n + 1 ib − 1 , � � � � Poles: z = ib + m , n ∈ Z ≥ 0 2 2 Zeros = − Poles Unitarity: (1 − | b | ) Im b = 0 ⇒ | Φ b ( x ) | = 1 ∀ x ∈ R Φ b ( x )Φ b ( − x ) = Φ b (0) 2 e i π x 2 Inversion relation: Pentagon identity: Φ b ( p )Φ b ( q ) = Φ b ( q )Φ b ( p + q )Φ b ( p ) 1 for self-adjoint Heisenberg operators pq − qp = (2 π � = 1) 2 π i Rinat Kashaev Generalized Faddeev–Volkov models

  5. The weight function of the Faddeev–Volkov model W FV ( x , y ) = Φ b ( x − y ) Φ b ( x + y ) e 2 π i xy Symmetry properties: 1 W FV ( x , y ) = W FV ( x , − y ) = W FV ( − x , y ) The Yang–Baxter relation: W FV ( p , x ) W FV ( q , x + y ) W FV ( p , y ) = W FV ( q , y ) W FV ( p , x + y ) W FV ( q , x ) Rinat Kashaev Generalized Faddeev–Volkov models

  6. Generalization to arbitrary self-dual LCA groups Let A be a LCA (locally compact abelian) group with the (Pontryagin) dual group ˆ A = all continuous group homomorphisms from A to the complex circle group T := { z ∈ C : | z | = 1 } . A is self-dual if there exists a group isomorphism f : A → ˆ A . Assume that there exists a function �·� : A → T (to be called gaussian exponential) such that � x ; y � := f ( x )( y ) = � x + y � � x � = �− x � , � x �� y � � Normalized Haar measure d µ ( x ): A 2 � x ; y � d µ ( x ) d µ ( y ) = 1 Examples 1 A = R , � x � = e π i α x 2 , � x ; y � = e 2 π i α xy , d µ ( x ) = � | α | d x 2 A = Z / N Z , � m � = e π i M N m ( m + N ) , � m ; n � = e 2 π i M N mn , √ d µ ( m ) = 1 / N 3 A = T × Z , � ( z , m ) � = z ± m , � ( u , m ); ( v , n ) � = ( u n v m ) ± 1 , d µ ( e 2 π i t , m ) = d t Rinat Kashaev Generalized Faddeev–Volkov models

  7. The quantum dilogarithm over a self-dual LCA group Let A be a self-dual LCA group with a gaussian exponential � . � . The Fourier transformation operator F in L 2 ( A ) is defined by the integral kernel � x | F | y � = � x ; y � . To any function g : A → C , associate operators g ( q ), g ( p ) and g ( p + q ) in L 2 ( A ): ∀ f ∈ L 2 ( A ) , ( g ( q ) f )( x ) = g ( x ) f ( x ) , g ( p ) := F g ( q ) F − 1 , g ( p + q ) := � q � − 1 g ( p ) � q � . Definition (Andersen–K) A quantum dilogarithm over ( A , � . � ) is a function φ : A → T such that φ ( x ) φ ( − x ) = φ (0) 2 � x � , (inversion relation) ∀ x ∈ A , (pentagon relation) φ ( p ) φ ( q ) = φ ( q ) φ ( p + q ) φ ( p ) . Rinat Kashaev Generalized Faddeev–Volkov models

  8. Remark The pentagon relation is equivalent to the integral relation � φ ( x ) φ ( y ) = A 3 D ( u , x , v , y , w ) φ ( w ) φ ( v ) φ ( u ) d µ ( u , v , w ) D ( u , x , v , y , w ) := γ � u − x ; w − y � � u − v + w � � γ := � z � d µ ( z ) A Rinat Kashaev Generalized Faddeev–Volkov models

  9. Examples 1 A = R , � x � = e π i x 2 , φ ( x ) = Φ b ( x ), (1 − | b | ) Im b = 0 2 A = T × Z , � ( z , m ) � = z m φ ( z , m ) = z max( m , 0) 1 1+ q 1 − m +2 j z φ ( z , m ) = � ∞ 1+ q 1 − m +2 j / z , q ∈ ] − 1 , 1[, related to the 2 j =0 tetrahedron index of Dimofte–Gaiotto–Gukov 3 A = R × Z / k Z , � ( x , m ) � = e π i x 2 e − π i m ( m + k ) / k , k − 1 � φ ( x , m ) = Φ e i θ ( a j ( x , m )) j =0 + (1 − k ) cos θ + je − i θ � j + m � x − i e i θ a j ( x , m ) := √ i k k k θ ∈ [0 , π/ 2[, { x } := the fractional part of x . Rinat Kashaev Generalized Faddeev–Volkov models

  10. Generalized Faddeev–Volkov weight function Let φ ( x ) be a quantum dilogarithm over a self-dual LCA group ( A , � . � ). The associated Faddeev–Volkov weight function is defined by the formula w( x , y ) := φ ( x − y ) φ ( x + y ) � x ; y � Symmetry properties 1 w( x , y ) = w( x , − y ) = w( − x , y ) Yang–Baxter relation w( p , x ) w( q , x + y ) w( p , y ) = w( q , y ) w( p , x + y ) w( q , x ) Rinat Kashaev Generalized Faddeev–Volkov models

  11. The standard interpretation as a star-triangle relation � w( u − t , x ) w( t , x + y ) ˜ ˜ w( t − s , y ) d µ ( t ) A = w( u , y ) ˜ w( u − s , x + y ) w( s , x ) � w( y , x ) := ˜ � y ; z � w( z , x ) d µ ( z ) A Rinat Kashaev Generalized Faddeev–Volkov models

  12. Weil transformation Let B ⊂ A be a closed subgroup such that B = B ⊥ := { x ∈ A | � x ; b � = 1 , ∀ b ∈ B } We have a group homomorphism p : A → ˆ B , p ( x )( b ) = � x ; b � , inducing a natural group isomorphism A / B ≃ ˆ B . Define the Weil transformation of w( x , y ): � w( s , t , x ) := ˇ w( s + b , x ) � t ; b � d µ ( b ) B The inverse Weil transformation � w( s , x ) = w( s , t , x ) d µ ( t ) ˇ A / B Quasi B -periodicity properties w( s + b , t , x ) = �− b ; t � ˇ ˇ w( s , t , x ) , w( s , t + b , x ) = ˇ ˇ w( s , t , x ) w( s , t , x ) is a section of a complex line bundle over ( A / B ) 2 . ⇒ ˇ Rinat Kashaev Generalized Faddeev–Volkov models

  13. Interpretation as IRF-model with abelian gauge symmetry Let χ : A 2 → T be a bi-character such that � x ; y � = χ ( x , y ) χ ( y , x ) . Then M( x , y , z ) := χ ( x , y ) ˇ w( x , y , z ) is quasi B -periodic M( x , y + b , z ) = χ ( x , b ) M( x , y , z ) , M( x + b , y , z ) = ¯ χ ( y , b ) M( x , y , z ) and satisfies a Yang–Baxter relation of IRF-type c c b b α α � � g a d µ ( g ) = a d µ ( h ) d d h A / B A / B β β e e f f γ γ b := M( a − c , d − b , α − β ) a c d α β Rinat Kashaev Generalized Faddeev–Volkov models

  14. Example: the IRF-form of the Faddeev–Volkov model � x � = e π i x 2 , A = R , φ ( x ) = Φ b ( x ) A / B = R / Z ≃ T ≃ ˆ Z = ˆ B = Z ⊂ R = A , B � x ; y � = e 2 π i xy , χ ( x , y ) = e π i xy M( x , y , z ) φ (0) 2 � 1 = e π i( xy − x 2 − z 2 ) φ ( x − z , u + y − x − 1 / 2)ˇ ˇ φ ( − x − z , u ) d u 0 with the Weil–Gelfand–Zak transformation of the quantum dilogarithm ˇ � φ ( x + k ) e 2 π i ky φ ( x , y ) = k ∈ Z Rinat Kashaev Generalized Faddeev–Volkov models

  15. The special value b = e π i / 6 � − e 2 π (¯ b x − i y ) � − e 2 π i x ; q � � ( q ; q ) ∞ ∞ θ q ˇ φ ( x , y ) = � � − e 2 π ¯ � � ( e − 2 π i y ; q ) ∞ − e 2 π i( x + y ) ; q b x ∞ θ q √ where q := e 2 π i b 2 = i e − π 3 , ∞ � (1 − xq n ) , ( x ; q ) ∞ := n =0 k 2 2 x k = ( q ; q ) ∞ ( −√ qx ; q ) ∞ ( −√ q / x ; q ) ∞ � θ q ( x ) := q k ∈ Z Rinat Kashaev Generalized Faddeev–Volkov models

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend