s duality in hyperk ahler hodge theory
play

S-duality in hyperk ahler Hodge theory Tam as Hausel Royal - PowerPoint PPT Presentation

S-duality in hyperk ahler Hodge theory Tam as Hausel Royal Society URF at University of Oxford & University of Texas at Austin http://www.math.utexas.edu/ hausel/talks.html September 2006 Geometry Conference in Honour of Nigel


  1. S-duality in hyperk¨ ahler Hodge theory Tam´ as Hausel Royal Society URF at University of Oxford & University of Texas at Austin http://www.math.utexas.edu/ ∼ hausel/talks.html September 2006 Geometry Conference in Honour of Nigel Hitchin Madrid 1

  2. Problem Problem 1 (Hitchin, 1995) . What is the space of L 2 harmonic forms on the moduli space of Higgs bundles on a Riemann surface? 2

  3. HyperK¨ ahLeR quotients • Construction of (Hitchin-Karlhede-Lindstr¨ om-Roˇ cek, 1987): • M hyperk¨ ahler manifold � • G Lie group, G M preserving the hyperk¨ ahler structure • hyperk¨ ahler moment map: µ H = ( µ I , µ J , µ K ) : M → R 3 ⊗ g ∗ • For ξ ∈ R 3 ⊗ ( g ∗ ) G the hyperk¨ ahler quotient M //// ξ G := µ − 1 H ( ξ ) /G, has a natural hyperk¨ ahler metric at its smooth points 3

  4. Moduli of Yang-Mills instantons on R 4 • P → R 4 a U ( n )-principal bundle over R 4 • M = � { A connection on P ; | R 4 tr ( F A ∧ ∗ F A ) | < ∞} • A = A 1 dx 1 + A 2 dx 2 + A 3 dx 3 + A 4 dx 4 in a fixed gauge, where A i ∈ V = Ω 0 ( R 4 , adP) • g ∈ G = Ω( R 4 , Ad ( P )) acts on A ∈ M by g ( A ) = g − 1 Ag + g − 1 dg , preserving the hyperk¨ ahler structure • µ H ( A ) = 0 ⇔ F A = ∗ F A , self-dual Yang-Mills equation • M ( R 4 , P ) = µ − 1 H (0) / G, the moduli space of finite energy self-dual Yang-Mills instantons on P , has a natural hyperk¨ ahler metric • same story for X 4 ALE gravitational instanton ⇒ M ( X 4 ALE , P ) Naka- jima quiver variety 4

  5. Moduli space of magnetic monopoles • Assume that A i are independent of x 4 • A = A 1 dx 1 + A 2 dx 2 + A 3 dx 3 connection on R 3 • A 4 = φ ∈ Ω 0 ( R 3 , ad P ) the Higgs field • G = Ω( R 3 , Ad P ) � M = { ( A, φ ) + boundary cond. } preserving the nat- ural hyperk¨ ahler metric on M • µ H ( A, φ ) = 0 ⇔ F A = ∗ d A φ Bogomolny equation • M ( R 3 , P ) = µ − 1 H (0) / G, the moduli space of magnetic monopoles on R 3 , has a natural hyperk¨ ahler metric • Atiyah-Hitchin 1985 finds the metric explicitly on M 2 ( R 3 , P SU (2) ) ⇒ describe scattering of two monopoles 5

  6. Moduli space of Higgs bundles • Assume that A i are independent of x 3 , x 4 • A = A 1 dx 1 + A 2 dx 2 connection on R 2 • Φ = ( A 3 − A 4 i ) dz ∈ Ω 1 , 0 ( R 2 , ad P ⊗ C ) complex Higgs field • G = Ω( R 2 , Ad P ) � M = { ( A, Φ) of finite energy } preserving the nat- ural hyperk¨ ahler metric on M • the moment map equations µ H ( A, Φ) = 0 ⇔ F ( A ) = − [Φ , Φ ∗ ] , d ′′ A Φ = 0 . equivalent with Hitchin’s self-duality equations • replacing R 2 with a genus g compact Riemann surface C ; M ( C, P ) = µ − 1 H (0) / G has a natural hyperk¨ ahler metric 6

  7. L 2 harmonic forms on complete manifolds • M complete Riemannian manifold, α ∈ Ω k ( M ) is harmonic iff dα = � d ∗ α = 0; it is L 2 iff M α ∧∗ α < ∞ ; H ∗ ( M ) is the space of L 2 harmonic forms • Hodge (orthogonal) decomposition: cpt ) ⊕ H ∗ ⊕ δ (Ω ∗ Ω ∗ L 2 = d (Ω ∗ cpt ) , • H ∗ cpt ( M ) → H ∗ ( M ) → H ∗ ( M ) is the forgetful map • Thus im( H ∗ cpt ( M ) → H ∗ ( M )) ”topological lower bound” for H ∗ ( M ) • H ∗ cpt ( M ) → H ∗ ( M ) is equivalent with the intersection pairing on H ∗ cpt ( M ), by Poincar´ e duality 7

  8. S-duality conjectures on L 2 harmonic forms Conjecture 1 (Sen,1994) . � 0 ( R 3 , P SU (2) )) � H ∗ ( � M k SL (2 , Z ) k ⇓ � 0 d � = mid dim( H d ( � 0 ( R 3 , P SU (2) ))) = M k φ ( k ) d = mid Conjecture 2 (Vafa-Witten,1994) . Let M k,c 1 = M k,c 1 ( X 4 ALE , P U ( n ) ) . φ φ For d � = mid , dim( H d ( M )) = 0 , while dim( H mid ( M )) = dim(im( H mid cpt ( M ) → H mid ( M ))) . ⇓ � q k − c/ 24 dim( H mid ( M k,c 1 Z φ ( q ) = )) is a modular form . φ c 1 ,k 8

  9. Results on L 2 harmonic forms • Sen 1994 ⇒ L 2 harmonic 2-form on � M 2 0 ( R 3 , P SU (2) ) ∼ = • Segal-Selby 1996 ⇒ dim(im( H mid → H mid ( M ))) = φ ( k ) for M = cpt ( M ) � 0 ( R 3 , P SU (2) ) M k • Hausel 1998 ⇒ dim(im( H mid cpt ( M ) → H mid ( M ))) = 0 for g > 1 and M = M 1 Dol ( SL (2 , C )) • Hitchin 2000 ⇒ H d ( M ) = 0 unless d = mid ; for a complete hy- perk¨ ahler manifold of linear growth; proves Sen’s conjecture for k = 2 • Hausel-Hunsicker-Mazzeo 2002 proves for fibered boundary manifolds M (like ALE, ALF or ALG gravitational instantons) H mid ( M ) = im( IH mid ( M ) → IH mid ( M )) m m ¯ • Carron 2005 proves for a QALE space M : H mid ( M ) = im( H mid cpt ( M ) → H mid ( M )) 9

  10. Mixed Hodge Structure of Deligne • � p,q H p,q ; k ( M ) is the associated graded to the weight and Hodge filtrations on the cohomology H k ( M, C ) of a complex algebraic variety M • h p,q ; k = dim( H p,q ; k ( M )) , the mixed Hodge numbers • H ( M ; x, y, t ) = � p,q,k h p,q ; k ( M ) x p y q t k , the mixed Hodge polynomial • P ( M ; t ) = H ( M ; 1 , 1 , t ), the Poincar´ e polynomial • E ( M ; x, y ) = x n y n H (1 /x, 1 /y, − 1), the E-polynomial of a smooth va- riety M . 10

  11. Arithmetic and topological content of the E-polynomial Theorem 2 (Katz 2005) . If M is a smooth quasi-projective variety de- fined over Z and # { M ( F q ) } = E ( q ) is a polynomial in q , then E ( M ; x, y ) = E ( xy ) . • MHS on H ∗ ( M, C ) is pure if h p,q ; k = 0 unless p + q = k ⇔ H ( M ; x, y, t ) = ( xyt 2 ) n E ( − 1 xt , − 1 yt ) ⇒ P ( M ; t ) = H ( M ; 1 , 1 , t ) = t 2 n E ( − 1 t , − 1 t ); exam- ples of varieties with pure MHS: smooth projective varieties, M Dol , M DR , Nakajima’s quiver varieties � H ( M ; xT, yT, tT − 1 ) • the pure part of H ( M ; x, y, t ) is PH ( M ; x, y ) = Coeff T 0 for a smooth M , it is always the image of the cohomology of a smooth compactification 11

  12. Nakajima quiver varieties • Γ quiver with vertex set I and edges E ⊂ I × I ; v , w ∈ N I two dimension vectors; V i and W i corresponding vector spaces • V v , w = � a ∈ E Hom( V t ( a ) , V h ( a ) ) ⊕ � i ∈ I Hom( V i , W i ), action GL( v ) = � i ∈ I GL( V i ) → GL( V v ) • for ξ = 1 v ∈ gl ( v ) GL( v ) define the (always smooth) Nakajima quiver variety by M ( v , w ) = V v , w × V ∗ v , w //// ξ GL( v ) Theorem 3 (Nakajima 1998) . There is an irreducible representation of the Kac-Moody algebra g (Γ) of highest weight w on ⊕ v H mid ( M ( v , w )) . In particular the Weyl-Kac character formula gives the middle Betti numbers of Nakajima quiver varieties. When Γ affine Dynkin diagram M ( v , w ) is a component of M ( X Γ , U ( n ) . In the affine case the Weyl-Kac character formula is known to have modular properties ⇒ Vafa-Witten. 12

  13. Theorem 4 (Hausel 2005) . For any quiver Γ , the Betti numbers of the Nakajima quiver varieties are: �� ( i,j ) ∈ E t − 2 � λi,λj � ��� i ∈ I t − 2 � λi, (1 w i ) � � � � � � T v � t − 2 � λi,λi � � � mk ( λi ) (1 − t 2 j ) v ∈ N I λ ∈P ( v ) � i ∈ I k j =1 P t ( M ( v , w )) t − d ( v , w ) T v = , � ( i,j ) ∈ E t − 2 � λi,λj � � � v ∈ N I � � T v � t − 2 � λi,λi � � � mk ( λi ) (1 − t 2 j ) v ∈ N I λ ∈P ( v ) i ∈ I k j =1 Corollary 5. The RHS is a deformation of the Weyl-Kac character for- mula ⇒ A Γ ( v , 0) = m v proving Kac’s conjecture (1982) , where � �� � � � abs. indec. reps of Γ over F q � � A Γ ( v , q ) := � � of dimension v , modulo isomorphism � � Corollary 6. When the quiver is affine ADE the RHS becomes an infinite product ⇒ ”elementary” proof of the modularity in the Vafa-Witten S- duality conjecture 13

  14. Spaces diffeomorphic to M ( C, P U ( n ) ) � � moduli space of semistable rank n M d Dol ( GL ( n, C )) := degree d Hitchin pairs on C � � moduli space of flat GL ( n, C )-connections M d DR ( GL ( n, C )) := 2 πid n Id around p on C \ { p } , with holonomy e M d B ( GL ( n, C )) := { A 1 , B 1 , . . . , A g , B g ∈ GL ( n, C ) | A − 1 1 B − 1 1 A 1 B 1 . . . A − 1 B − 1 A g B g = ξ n Id } /GL ( n, C ) g g 14

  15. Topological Mirror Test Theorem 7 (Hausel–Thaddeus 2002) . In the following diagram M d M d Dol ( PGL ( n )) − → Dol ( SL ( n )) ↓ χ PGL ( n ) ↓ χ SL ( n ) ∼ H PGL ( n ) = H SL ( n ) . the generic fibers of the Hitchin maps χ PGL ( n ) and χ SL ( n ) are dual Abelian varieties. ⇒ M d DR ( PGL ( n )) and M d DR ( SL ( n )) satisfy the SYZ construction for a pair of mirror symmetric Calabi-Yau manifolds. Conjecture 3 (Hausel–Thaddeus 2002) . For all d, e ∈ Z , satisfying ( d, n ) = ( e, n ) = 1 , � � � , � x, y ; M e E B e B d = E ˆ x, y ; M d DR ( SL ( n, C )) DR ( PGL ( n, C )) st st which morally should be related to S-duality in the recent work (Kapustin- Witten 2006) about a physical interpration of the Geometric Langlands programme. 15

  16. Mirror symmetry for finite groups of Lie type Conjecture 4 (Hausel–R-Villegas 2004) . � � � x, y, M e � E B e B d = E ˆ x, y, M d B ( SL ( n, C )) B ( PGL ( n, C )) st st Theorem 8 (Hausel–R-Villegas, 2004) . G = SL ( n ) or GL ( n ) G ( F q ) finite group of Lie type E ( √ q, √ q, M d B ( G ( F q )) } = � | G ( F q ) | 2 g − 2 B ( G )) = # {M d χ (1) 2 g − 1 χ ( ξ d n ) χ ∈ Irr ( G ( F q )) ⇓ ” differences between the character tables of PGL ( n, F q ) and its Langlands dual SL ( n, F q ) are governed by mirror symmetry” 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend