generalized b splines and local refinements
play

Generalized B-splines and local refinements Carla Manni Department - PowerPoint PPT Presentation

Generalized B-splines and local refinements Carla Manni Department of Mathematics, University of Roma Tor Vergata collaboration with P. Costantini, F. Pelosi, H. Speleers 11-th MAIA Conference September 2530, 2013 Ettore


  1. Unifying approach: Bernstein-like basis Ex: < 1 , t, u ( t ) , v ( t ) > ( ≃ cubics ) u, v ∈ C 2 , t ∈ [0 , 1] ONTP/Bernstein-like basis { B 0 , B 1 , B 2 , B 3 } : B 0 (1) = B 0 ′ (1) = B 0 ′′ (1) = 0 C 2 ⇒ easy to characterize/construct B 1 (0) = B 1 (1) = B 1 ′ (1) = 0 B 2 (0) = B 2 ′ (0) = B 2 (1) = 0 B 3 (0) = B 3 ′ (0) = B 3 ′′ (0) = 0 control points: (0 , b 0 ) , ( ξ, b 1 ) , (1 − η, b 2 ) , (1 , b 3 ) , 0 < ξ < 1 − η < 1 , control polygon describes s ( t ) = � 3 j =0 b j B j ( t ) 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Generalized B-splines and local refinements – p. 9/50

  2. Unifying approach: Bernstein-like basis Ex: < 1 , t, u ( t ) , v ( t ) > ( ≃ cubics ) u, v ∈ C 2 , t ∈ [0 , 1] ONTP/Bernstein-like basis { B 0 , B 1 , B 2 , B 3 } : B 0 (1) = B 0 ′ (1) = B 0 ′′ (1) = 0 C 2 ⇒ easy to characterize/construct B 1 (0) = B 1 (1) = B 1 ′ (1) = 0 B 2 (0) = B 2 ′ (0) = B 2 (1) = 0 B 3 (0) = B 3 ′ (0) = B 3 ′′ (0) = 0 control points: (0 , b 0 ) , ( ξ, b 1 ) , (1 − η, b 2 ) , (1 , b 3 ) , 0 < ξ < 1 − η < 1 , control polygon describes s ( t ) = � 3 j =0 b j B j ( t ) 2 1.8 1.6 1.4 1.2 1 0.8 properties of s by its control polygon 0.6 0.4 0.2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Generalized B-splines and local refinements – p. 9/50

  3. Unifying approach: P p = < 1 , t, . . . , t p − 2 , t p − 1 , t p > I Generalized B-splines and local refinements – p. 10/50

  4. Unifying approach: P u,v := < 1 , t, . . . , t p − 2 , u ( t ) , v ( t ) >, p ≥ 2 t ∈ [0 , 1] I p Generalized B-splines and local refinements – p. 10/50

  5. Unifying approach: P u,v := < 1 , t, . . . , t p − 2 , u ( t ) , v ( t ) >, p ≥ 2 t ∈ [0 , 1] I p < D p − 1 u, D p − 1 v > Chebyshev in [0 , 1] and Extended Chebyshev in (0 , 1) Generalized B-splines and local refinements – p. 10/50

  6. Unifying approach: ONTP-basis P u,v := < 1 , t, . . . , t p − 2 , u ( t ) , v ( t ) >, p ≥ 2 t ∈ [0 , 1] I p < D p − 1 u, D p − 1 v > Chebyshev in [0 , 1] and Extended Chebyshev in (0 , 1) ⇓ P u,v possesses a ONTP-basis I p Generalized B-splines and local refinements – p. 10/50

  7. Unifying approach: ONTP-basis P u,v := < 1 , t, . . . , t p − 2 , u ( t ) , v ( t ) >, p ≥ 2 t ∈ [0 , 1] I p < D p − 1 u, D p − 1 v > Chebyshev in [0 , 1] and Extended Chebyshev in (0 , 1) ⇓ P u,v possesses a ONTP-basis I p Ex: u, v : trigonometric functions u, v : exponential functions u, v : variable degree .... Generalized B-splines and local refinements – p. 10/50

  8. Unifying approach: ONTP-basis P u,v := < 1 , t, . . . , t p − 2 , u ( t ) , v ( t ) >, p ≥ 2 t ∈ [0 , 1] I p < D p − 1 u, D p − 1 v > Chebyshev in [0 , 1] and Extended Chebyshev in (0 , 1) ⇓ P u,v possesses a ONTP-basis I p Bernstein-like representations [Goodman, T.N.T., Mazure, M.-L., JAT, 2001] [Mainar, E., Pe˜ na, J.M., S´ anchez-Reyes, J, CAGD 2001] [Carnicer, Mainar, Pe˜ na; CA 2004] [Mazure, M.-L., CA, 2005] [Costantini, P ., Lyche, T., Manni, C., NM, 2005] .... Generalized B-splines and local refinements – p. 10/50

  9. Unifying approach: Bernstein-like basis smoothness between adjacent segments: easily described by control points Generalized B-splines and local refinements – p. 11/50

  10. Unifying approach: Bernstein-like basis smoothness between adjacent segments: easily described by control points 5 3 4 2 3 1 2 0 1 0 −1 −1 −2 −2 −3 −3 −4 −4 0 0.5 1 1.5 2 0 0.5 1 1.5 2 C 1 cubics C 1 Trig/Exp Generalized B-splines and local refinements – p. 11/50

  11. Unifying approach: Bernstein-like basis smoothness between adjacent segments: easily described by control points 20 15 10 5 0 2 1.5 2 1 1 0.5 0 0 −1 C 1 cubics Generalized B-splines and local refinements – p. 11/50

  12. Unifying approach: Bernstein-like basis smoothness between adjacent segments: easily described by control points 20 15 10 5 0 2 1.5 2 1 1 0.5 0 0 −1 C 1 cubics 20 15 10 5 0 2 1.5 2 1 1 0.5 0 0 −1 C 1 exponential (cubics) Generalized B-splines and local refinements – p. 11/50

  13. Spaces good for design P u,v := < 1 , t, . . . , t p − 2 , u ( t ) , v ( t ) >, p ≥ 2 t ∈ [0 , 1] I p

  14. Spaces good for design E ⊂ C n : n + 1 dimensional EC space containing constants I I E is Extended Chebyshev (EC) in I if any non trivial element has at most n zeros in I

  15. Spaces good for design E ⊂ C n : n + 1 dimensional EC space containing constants I B 0 , · · · B n is a Bernstein-like basis of I E in [ a, b ] ⊂ I if B 0 , · · · B n is NTP B k vanishes exactly k times in a and n − k times in b

  16. Spaces good for design E ⊂ C n : n + 1 dimensional EC space containing constants I B 0 , · · · B n is a Bernstein-like basis of I E in [ a, b ] ⊂ I if B 0 , · · · B n is NTP B k vanishes exactly k times in a and n − k times in b A Bernstein-like basis of I E is the ONTP basis of I E

  17. Spaces good for design E ⊂ C n : n + 1 dimensional EC space containing constants I B 0 , · · · B n is a Bernstein-like basis of I E in [ a, b ] ⊂ I if B 0 , · · · B n is NTP B k vanishes exactly k times in a and n − k times in b A Bernstein-like basis of I E is the ONTP basis of I E I E possesses a Bernstein-like basis in any [ a, b ] ⊂ I iff { f ′ : f ∈ I E } is an Extended Chebyshev space in I

  18. Spaces good for design E ⊂ C n : n + 1 dimensional EC space containing constants I B 0 , · · · B n is a Bernstein-like basis of I E in [ a, b ] ⊂ I if B 0 , · · · B n is NTP B k vanishes exactly k times in a and n − k times in b A Bernstein-like basis of I E is the ONTP basis of I E I E possesses a Bernstein-like basis in any [ a, b ] ⊂ I iff { f ′ : f ∈ I E } is an Extended Chebyshev space in I in I E all classical geometric design algorithms can be developed for the Bernstein-like basis (blossoms) ⇒ I E is good for design true under less restrictive hypoteses [Goodman, T.N.T., Mazure, M.-L., JAT, 2001], [Carnicer, Mainar, Pe˜ na; CA 2004], [Mazure, M.-L., AiCM, 2004], [Mazure, M.-L., CA, 2005], [Costantini, P ., Lyche, T., Manni, C., NM, 2005], [Mazure, M.-L., NM, 2011] ... Generalized B-splines and local refinements – p. 12/50

  19. Alternatives to the rational model

  20. Alternatives to the rational model rational model: I P p → B-splines → NURBS

  21. Alternatives to the rational model rational model: I P p → B-splines → NURBS P p = < 1 , t, . . . , t p − 2 , t p − 1 , t p > alternative: I ↓ P u,v := < 1 , t, . . . , t p − 2 , u ( t ) , v ( t ) > I p Generalized B-splines and local refinements – p. 13/50

  22. Alternatives to the rational model rational model: I P p → B-splines → NURBS P p = < 1 , t, . . . , t p − 2 , t p − 1 , t p > alternative: I ↓ P u,v := < 1 , t, . . . , t p − 2 , u ( t ) , v ( t ) > I p P u,v select proper I p : good approximation properties Generalized B-splines and local refinements – p. 13/50

  23. Alternatives to the rational model rational model: I P p → B-splines → NURBS P p = < 1 , t, . . . , t p − 2 , t p − 1 , t p > alternative: I ↓ P u,v := < 1 , t, . . . , t p − 2 , u ( t ) , v ( t ) > I p P u,v select proper I p : good approximation properties exactly represent salient profiles P u,v < 1 , t, . . . , t p − 2 , cos ωt, sin ωt > = TRIG I := p P u,v < 1 , t, . . . , t p − 2 , cosh ωt, sinh ωt > = TRIG I := p

  24. Alternatives to the rational model rational model: I P p → B-splines → NURBS P p = < 1 , t, . . . , t p − 2 , t p − 1 , t p > alternative: I ↓ P u,v := < 1 , t, . . . , t p − 2 , u ( t ) , v ( t ) > I p P u,v select proper I p : good approximation properties exactly represent salient profiles P u,v < 1 , t, . . . , t p − 2 , cos ωt, sin ωt > = TRIG I := p P u,v < 1 , t, . . . , t p − 2 , cosh ωt, sinh ωt > = HYP I := p conic sections, helix, cycloid, ... Generalized B-splines and local refinements – p. 13/50

  25. Alternatives to the rational model rational model: I P p → B-splines → NURBS P p = < 1 , t, . . . , t p − 2 , t p − 1 , t p > alternative: I ↓ P u,v := < 1 , t, . . . , t p − 2 , u ( t ) , v ( t ) > I p P u,v select proper I p : good approximation properties describe sharp variations < 1 , t, . . . , t p − 2 , e ωt , e − ωt > = HYP ( HYP ) P u,v I := p < 1 , t, . . . , t p − 2 , (1 − t ) ω , t ω > = VDP P u,v I := p

  26. Alternatives to the rational model rational model: I P p → B-splines → NURBS P p = < 1 , t, . . . , t p − 2 , t p − 1 , t p > alternative: I ↓ P u,v := < 1 , t, . . . , t p − 2 , u ( t ) , v ( t ) > I p P u,v select proper I p : good approximation properties describe sharp variations < 1 , t, . . . , t p − 2 , e ωt , e − ωt > = EXP = ( HYP ) P u,v I := p < 1 , t, . . . , t p − 2 , (1 − t ) ω , t ω > = VDP P u,v I := p Generalized B-splines and local refinements – p. 13/50

  27. Alternatives to the rational model rational model: I P p → B-splines → NURBS P p = < 1 , t, . . . , t p − 2 , t p − 1 , t p > alternative: I ↓ P u,v := < 1 , t, . . . , t p − 2 , u ( t ) , v ( t ) > I p P u,v construct/analyse spline spaces with sections in I p with suitable bases for them (analogous to B-splines) [Lyche, CA 1985] [Schumaker, L.L.; 1993], [Koch, P .E, Lyche, T.; Computing 1993], [Maruˇ sic, M., Rogina, M.; JCAM 1995], [Kvasov, B.I., Sattayatham, P .; JCAM 1999], [Costantini, P .; CAGD 2000], [Costantini, P ., Manni, C.; RM 2006] [Wang Fang; JCAM 2008], [Kavcic, Rogina, Bosner, Math. Comput. in Simulation, 2010], . . . Generalized B-splines and local refinements – p. 13/50

  28. Generalized B-splines Ξ := { ξ 1 ≤ ξ 2 ≤ · · · ≤ ξ n + p +1 } , { ..., u i , v i , ... } , < 1 , t, . . . , t p − 2 , u i ( t ) , v i ( t ) >, < D p − 1 u i , D p − 1 v i > Chebyshev D p − 1 v i ( ξ i ) = 0 , D p − 1 v i ( ξ i +1 ) > 0 , D p − 1 u i ( ξ i ) > 0 , D p − 1 u i ( ξ i +1 ) = 0 , Generalized B-splines and local refinements – p. 14/50

  29. Generalized B-splines Ξ := { ξ 1 ≤ ξ 2 ≤ · · · ≤ ξ n + p +1 } , { ..., u i , v i , ... } , < 1 , t, . . . , t p − 2 , u i ( t ) , v i ( t ) >, < D p − 1 u i , D p − 1 v i > Chebyshev D p − 1 v i ( ξ i ) = 0 , D p − 1 v i ( ξ i +1 ) > 0 , D p − 1 u i ( ξ i ) > 0 , D p − 1 u i ( ξ i +1 ) = 0 ,  D p − 1 v i ( t )  t ∈ [ ξ i , ξ i +1 )   D p − 1 v i ( ξ i +1 )  B (1) D p − 1 u i +1 ( t ) � i, Ξ ( t ) := t ∈ [ ξ i +1 , ξ i +2 )  D p − 1 u i +1 ( ξ i +1 )    0 elsewhere Generalized B-splines and local refinements – p. 14/50

  30. Generalized B-splines Ξ := { ξ 1 ≤ ξ 2 ≤ · · · ≤ ξ n + p +1 } , { ..., u i , v i , ... } , < 1 , t, . . . , t p − 2 , u i ( t ) , v i ( t ) >, < D p − 1 u i , D p − 1 v i > Chebyshev D p − 1 v i ( ξ i ) = 0 , D p − 1 v i ( ξ i +1 ) > 0 , D p − 1 u i ( ξ i ) > 0 , D p − 1 u i ( ξ i +1 ) = 0 ,  D p − 1 v i ( t )  t ∈ [ ξ i , ξ i +1 )   D p − 1 v i ( ξ i +1 )  B (1) D p − 1 u i +1 ( t ) � i, Ξ ( t ) := t ∈ [ ξ i +1 , ξ i +2 )  D p − 1 u i +1 ( ξ i +1 )    0 elsewhere i, Ξ ( t ) = � t ( s )d s − � t B ( p ) δ ( p − 1) B ( p − 1) δ ( p − 1) B ( p − 1) � −∞ � � −∞ � i +1 , Ξ � i +1 , Ξ ( s )d s i, Ξ i, Ξ 1 δ ( p ) � i, Ξ := � + ∞ B ( p ) −∞ � i,W, Ξ ( s )d s Generalized B-splines and local refinements – p. 14/50

  31. Generalized B-splines Ξ := { ξ 1 ≤ ξ 2 ≤ · · · ≤ ξ n + p +1 } , { ..., u i , v i , ... } , < 1 , t, . . . , t p − 2 , u i ( t ) , v i ( t ) >, < D p − 1 u i , D p − 1 v i > Chebyshev D p − 1 v i ( ξ i ) = 0 , D p − 1 v i ( ξ i +1 ) > 0 , D p − 1 u i ( ξ i ) > 0 , D p − 1 u i ( ξ i +1 ) = 0 ,   D p − 1 v i ( t )   t − ξ i t ∈ [ ξ i , ξ i +1 ) t ∈ [ ξ i , ξ i +1 )     D p − 1 v i ( ξ i +1 ) ξ i +1 − ξ i   B (1) D p − 1 u i +1 ( t ) B (1) ξ i +2 − t � i, Ξ ( t ) := i, Ξ ( t ) := t ∈ [ ξ i +1 , ξ i +2 ) t ∈ [ ξ i +1 , ξ i +2 )  D p − 1 u i +1 ( ξ i +1 )  ξ i +2 − ξ i +1       0 elsewhere 0 elsewhere i, Ξ ( t ) = � t ( s )d s − � t B ( p ) δ ( p − 1) B ( p − 1) δ ( p − 1) B ( p − 1) � −∞ � � −∞ � i +1 , Ξ � i +1 , Ξ ( s )d s i, Ξ i, Ξ 1 δ ( p ) � i, Ξ := � + ∞ B ( p ) −∞ � i,W, Ξ ( s )d s B-splines i, Ξ ( t ) = � t ( s )d s − � t B ( p ) −∞ δ ( p − 1) B ( p − 1) −∞ δ ( p − 1) i +1 , Ξ B ( p − 1) i +1 , Ξ ( s )d s i, Ξ i, Ξ 1 δ ( p ) i, Ξ := � + ∞ −∞ B ( p ) i, Ξ ( s )d s Generalized B-splines and local refinements – p. 14/50

  32. Generalized B-splines Ξ := { ξ 1 ≤ ξ 2 ≤ · · · ≤ ξ n + p +1 } , { ..., u i , v i , ... } , < 1 , t, . . . , t p − 2 , u i ( t ) , v i ( t ) >, < D p − 1 u i , D p − 1 v i > Chebyshev D p − 1 v i ( ξ i ) = 0 , D p − 1 v i ( ξ i +1 ) > 0 , D p − 1 u i ( ξ i ) > 0 , D p − 1 u i ( ξ i +1 ) = 0 , 1 1 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 B (1) B (1) � i, Ξ i, Ξ All Chebyshevian spline spaces good for design can be built by means of integral recurrence relations, [Mazure M.L., NM 2011]

  33. Generalized B-splines: exponential (hyperbolic) Ξ := { ξ 1 ≤ ξ 2 ≤ · · · ≤ ξ n + p +1 } : knots W := { ..., ω i , ... } : shape parameters P u i ,v i := < 1 , t, . . . , t p − 2 , cosh ω i t, sinh ω i t > I p Exponential case: p = 3 := < 1 , t, e ωt , e − ωt > P u,v EXP 3 = I isomorphic to I P 3 3 Bernstein-like basis 1 1 1 1 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0 0 0 0 0 1 0 0.5 1 0 0.25 0.5 0.75 1 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 C 2 cubic B-splines ω → 0 : Generalized B-splines and local refinements – p. 15/50

  34. Generalized B-splines: exponential (hyperbolic) Ξ := { ξ 1 ≤ ξ 2 ≤ · · · ≤ ξ n + p +1 } : knots W := { ..., ω i , ... } : shape parameters P u i ,v i := < 1 , t, . . . , t p − 2 , cosh ω i t, sinh ω i t > I p Exponential case: p = 3 := < 1 , t, e ωt , e − ωt > P u,v EXP 3 = I isomorphic to I P 3 3 Bernstein-like basis 1 1 1 1 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0 0 0 0 0 0.25 0.5 0.75 1 0 1 0 0.5 1 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 ω = 3 h Generalized B-splines and local refinements – p. 15/50

  35. Generalized B-splines: properties B ( p ) { � i, Ξ ( t ) , i = 1 , . . . } , Properties analogous to classical B-splines positivity partition of unity: p ≥ 2 compact support smoothness derivatives local linear independence . . .

  36. Generalized B-splines: properties B ( p ) { � i, Ξ ( t ) , i = 1 , . . . } , Properties analogous to classical B-splines positivity partition of unity: p ≥ 2 compact support smoothness derivatives local linear independence . . . shape properties { . . . , u i , v i , . . . } Generalized B-splines and local refinements – p. 16/50

  37. Generalized B-splines: properties B ( p ) { � i, Ξ ( t ) , i = 1 , . . . } , Properties analogous to classical B-splines positivity partition of unity: p ≥ 2 1 compact support 0.5 smoothness 0 derivatives −0.5 local linear independence −1 . . . −1.5 shape properties { . . . , u i , v i , . . . } −0.5 0 0.5 1 1.5 2 2.5 trig. and exp. parts can be mixed Generalized B-splines and local refinements – p. 16/50

  38. Generalized B-splines: properties B ( p ) { � i, Ξ ( t ) , i = 1 , . . . } , Properties analogous to classical B-splines positivity partition of unity: p ≥ 2 compact support smoothness derivatives local linear independence . . . shape properties { . . . , u i , v i , . . . } trig. and exp. parts can be mixed straightforward multivariate extension via tensor product Generalized B-splines and local refinements – p. 16/50

  39. Summary

  40. Summary P p = < 1 , t, . . . , t p − 2 , t p − 1 , t p > I ↓ P u,v := < 1 , t, . . . , t p − 2 , u ( t ) , v ( t ) > I p

  41. Summary P p = < 1 , t, . . . , t p − 2 , t p − 1 , t p > I ↓ P u,v := < 1 , t, . . . , t p − 2 , u ( t ) , v ( t ) > I p Bernstein like bases/control polygon Generalized B-splines and local refinements – p. 17/50

  42. Summary P p = < 1 , t, . . . , t p − 2 , t p − 1 , t p > I ↓ P u,v := < 1 , t, . . . , t p − 2 , u ( t ) , v ( t ) > I p Bernstein like bases/control polygon P u,v Generalized B-splines: spline spaces with sections in I p with suitable bases for them (analogous to B-splines) Generalized B-splines and local refinements – p. 17/50

  43. Local Refinements local refinements are crucial in applications (geometric modelling, simulation,...) Generalized B-splines and local refinements – p. 18/50

  44. Local Refinements local refinements are crucial in applications (geometric modelling, simulation,...) Generalized B-splines and local refinements – p. 18/50

  45. Local Refinements local refinements are crucial in applications (geometric modelling, simulation,...) 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Generalized B-splines and local refinements – p. 18/50

  46. Local Refinements local refinements are crucial in applications (geometric modelling, simulation,...) 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

  47. Local Refinements local refinements are crucial in applications (geometric modelling, simulation,...) 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Generalized B-splines and local refinements – p. 18/50

  48. DRAWBACKS of tensor product structures the tensor product structure prevents local refinements Alternatives (polynomial B-splines): Generalized B-splines and local refinements – p. 19/50

  49. DRAWBACKS of tensor product structures the tensor product structure prevents local refinements Alternatives (polynomial B-splines): T-splines/Analysis-Suitable T-splines [Bazilevs, Y., et al. CMAME 2010], [Beirão da Veiga, et al. CMAME, 2012]... Generalized B-splines and local refinements – p. 19/50

  50. DRAWBACKS of tensor product structures the tensor product structure prevents local refinements Alternatives (polynomial B-splines): T-splines/Analysis-Suitable T-splines [Bazilevs, Y., et al. CMAME 2010], [Beirão da Veiga, et al. CMAME, 2012]... LR splines [Dokken T., Lyche T., Pettersen K.F ., CAGD 2013], Generalized B-splines and local refinements – p. 19/50

  51. DRAWBACKS of tensor product structures the tensor product structure prevents local refinements Alternatives (polynomial B-splines): T-splines/Analysis-Suitable T-splines [Bazilevs, Y., et al. CMAME 2010], [Beirão da Veiga, et al. CMAME, 2012]... LR splines [Dokken T., Lyche T., Pettersen K.F ., CAGD 2013], Hierarchical bases Generalized B-splines and local refinements – p. 19/50

  52. DRAWBACKS of tensor product structures the tensor product structure prevents local refinements Alternatives (polynomial B-splines): T-splines/Analysis-Suitable T-splines [Bazilevs, Y., et al. CMAME 2010], [Beirão da Veiga, et al. CMAME, 2012]... LR splines [Dokken T., Lyche T., Pettersen K.F ., CAGD 2013], Hierarchical bases Splines over T-meshes Generalized B-splines and local refinements – p. 19/50

  53. DRAWBACKS of tensor product structures the tensor product structure prevents local refinements Alternatives (polynomial B-splines): T-splines/Analysis-Suitable T-splines [Bazilevs, Y., et al. CMAME 2010], [Beirão da Veiga, et al. CMAME, 2012]... LR splines [Dokken T., Lyche T., Pettersen K.F ., CAGD 2013], Hierarchical bases Splines over T-meshes B-splines on triangulations Generalized B-splines and local refinements – p. 19/50

  54. Generalized Splines: local refinements? Generalized B-splines and local refinements – p. 20/50

  55. Generalized Splines: local refinements? Generalized splines have global tensor-product structure Generalized B-splines and local refinements – p. 20/50

  56. Generalized Splines: local refinements? Generalized splines have global tensor-product structure some localization techniques can be applied to (some) generalized spline spaces. Hierarchical generalized splines Generalized splines over T-meshes Quadratic Generalized splines over triangulations Generalized B-splines and local refinements – p. 20/50

  57. Hierarchical model [Forsey, D.R., Bartels R.H., CG 1988], [Kraft R., Bartels R.H., Surf. Fitt. Mult. Meth. 1997], [Rabut C., 2005] [Vuong A.-V., Giannelli C., J¨ uttler B., Simeon B.; CMAME 2011], [ Giannelli C., J¨ uttler B., Speleers, H.; CAGD 2012], [Bracco C., et al., JCAM 2014] sequence of N nested tensor-product spline spaces V 0 ⊂ V 1 ⊂ · · · ⊂ V N − 1 V 2 V 1 V 0 Generalized B-splines and local refinements – p. 21/50

  58. Hierarchical B-spline model [Forsey, D.R., Bartels R.H., CG 1988], [Kraft R., Bartels R.H., Surf. Fitt. Mult. Meth. 1997], [Rabut C., 2005] [Vuong A.-V., Giannelli C., J¨ uttler B., Simeon B.; CMAME 2011], [ Giannelli C., J¨ uttler B., Speleers, H.; CAGD 2012], [Bracco C., et al., JCAM 2014] sequence of N nested tensor-product spline spaces V 0 ⊂ V 1 ⊂ · · · ⊂ V N − 1 V 2 V 1 V 0 V ℓ is spanned by a tensor-product B-spline basis B ℓ : B ℓ = { . . . , B i,ℓ , . . . } Generalized B-splines and local refinements – p. 21/50

  59. Hierarchical B-spline model [Forsey, D.R., Bartels R.H., CG 1988], [Kraft R., Bartels R.H., Surf. Fitt. Mult. Meth. 1997], [Rabut C., 2005] [Vuong A.-V., Giannelli C., J¨ uttler B., Simeon B.; CMAME 2011], [ Giannelli C., J¨ uttler B., Speleers, H.; CAGD 2012], [Bracco C., et al., JCAM 2014] sequence of N nested tensor-product spline spaces V 0 ⊂ V 1 ⊂ · · · ⊂ V N − 1 V 2 V 1 V 0 V ℓ is spanned by a tensor-product B-spline basis B ℓ : B ℓ = { . . . , B i,ℓ , . . . } sequence of N nested domains Ω N − 1 ⊂ Ω N − 2 ⊂ · · · ⊂ Ω 0 , Ω N = ∅ Ω 2 Ω 1 Ω 0 Generalized B-splines and local refinements – p. 21/50

  60. Hierarchical B-spline model degree 1 Recursive definition (I) Initialization: H 0 := B 0 [Vuong A.-V., Giannelli C., J¨ uttler B., Simeon B.; CMAME 2011]

  61. Hierarchical B-spline model degree 1 Recursive definition (I) Initialization: H 0 := B 0 (II) construction of H ℓ +1 from H ℓ , H ℓ +1 := H ℓ +1 ∪ H ℓ +1 C F ℓ = 0 , 1 , . . . , N − 1 [Vuong A.-V., Giannelli C., J¨ uttler B., Simeon B.; CMAME 2011]

  62. Hierarchical B-spline model degree 1 Recursive definition (I) Initialization: H 0 := B 0 (II) construction of H ℓ +1 from H ℓ , H ℓ +1 := H ℓ +1 ∪ H ℓ +1 C F ℓ = 0 , 1 , . . . , N − 1 := { B i,ℓ ∈ H ℓ : supp ( B i,ℓ ) �⊂ Ω ℓ +1 } H ℓ +1 C [Vuong A.-V., Giannelli C., J¨ uttler B., Simeon B.; CMAME 2011]

  63. Hierarchical B-spline model degree 1 Recursive definition (I) Initialization: H 0 := B 0 (II) construction of H ℓ +1 from H ℓ , H ℓ +1 := H ℓ +1 ∪ H ℓ +1 C F ℓ = 0 , 1 , . . . , N − 1 := { B i,ℓ ∈ H ℓ : supp ( B i,ℓ ) �⊂ Ω ℓ +1 } H ℓ +1 C := { B i,ℓ +1 ∈ B ℓ +1 : supp ( B i,ℓ +1 ) ⊂ Ω ℓ +1 } H ℓ +1 F [Vuong A.-V., Giannelli C., J¨ uttler B., Simeon B.; CMAME 2011] Generalized B-splines and local refinements – p. 22/50

  64. Hierarchical B-spline model sequence of N nested tensor-product spline spaces V 0 ⊂ V 1 ⊂ · · · ⊂ V N − 1 V 2 V 1 V 0 V ℓ is spanned by a tensor-product B-spline basis B ℓ : B ℓ = { . . . , B i,ℓ , . . . } sequence of N nested domains Ω N − 1 ⊂ Ω N − 2 ⊂ · · · ⊂ Ω 0 , Ω N = ∅ Ω 2 Ω 1 Ω 0 Generalized B-splines and local refinements – p. 23/50

  65. Hierarchical Generalized B-spline model Generalized B-splines support a hierarchical refinement sequence of N nested tensor-product spline spaces V 0 ⊂ V 1 ⊂ · · · ⊂ V N − 1 V 2 V 1 V 0 V ℓ spanned by a tensor-product Generalized B-spline basis � B ℓ : B ℓ = { . . . , � � B i,ℓ , . . . } sequence of N nested domains Ω N − 1 ⊂ Ω N − 2 ⊂ · · · ⊂ Ω 0 , Ω N = ∅ Ω 2 Ω 1 Ω 0 Generalized B-splines and local refinements – p. 23/50

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend