gamma ray signatures of scalar dark matter takashi toma
play

Gamma-ray Signatures of Scalar Dark Matter Takashi Toma Durham - PowerPoint PPT Presentation

Gamma-ray Signatures of Scalar Dark Matter Takashi Toma Durham University Institute for Particle Physics Phenomenology (IPPP) Basis of the Universe with Revolutionary Ideas 2014 Toyama, Japan, 13-14 Feb. Based on T. T., arXiv:1307.6181,


  1. Gamma-ray Signatures of Scalar Dark Matter Takashi Toma Durham University Institute for Particle Physics Phenomenology (IPPP) Basis of the Universe with Revolutionary Ideas 2014 Toyama, Japan, 13-14 Feb. Based on T. T., arXiv:1307.6181, Phys.Rev.Lett. 111 (2013) 091301, A. Ibarra, T. T., M. Totzauer, S. Wild, in preparation Takashi Toma (IPPP) BURI 2014 14th Feb. 2014 1 / 19

  2. Outline Outline Introduction Simple Model of Scalar Dark Matter Gamma-ray Signatures Summary Takashi Toma (IPPP) BURI 2014 14th Feb. 2014 2 / 19

  3. Introduction Indirect detection In particular, γ -ray can be a characteristic signal of DM. · γ -ray flux · But Fermi Co. is negative. Significance is 1 . 6 σ at 133 GeV. E 2 · dJ/dE [GeV / cm 2 / s / sr] 10 -5 10 -6 10 -7 10 0 10 1 10 2 E [GeV] Fermi Collaboration, arXiv: 1305.5597 C. Weniger, arXiv:1210.3013 This peak would be a fake, but · γ -ray excess around 130 it is still interesting to study a GeV? model which generates such a · � σ v γ � ∼ 10 − 27 cm 3 / s strong γ -ray. thermal DM ↔ 10 − 26 cm 3 / s · We need better instruments. Takashi Toma (IPPP) BURI 2014 14th Feb. 2014 3 / 19

  4. Introduction Gamma-ray spectrum Gamma-ray spectrum from dark matter annihilation Bringmann & Weniger � 2012 � � E � E � 0.15 10 � E � E � 0.02 ΓΓ 1 box x 2 dN � dx , , W W q q Z Z VIB 0.1 0.01 0.02 0.05 0.10 0.20 0.50 1.00 2.00 x � E � m Χ T. Bringbann, C. Weniger arXiv:1208.5481 Takashi Toma (IPPP) BURI 2014 14th Feb. 2014 4 / 19

  5. Introduction Gamma-ray spectrum Gamma-ray spectrum Line spectrum ex. χχ → γγ , χχ → Z γ suppression factor ∼ α 2 em Internal bremsstrahlung χχ → f f γ When chiral suppression is effective, it becomes important. suppression factor ∼ α em Box type spectrum ex. χχ → SS → 4 γ ( S : light mediator) if m χ ≫ m S , box type if m χ ≈ m S , E γ ∼ m χ / 2 Takashi Toma (IPPP) BURI 2014 14th Feb. 2014 5 / 19

  6. Introduction Thermal Dark Matter Thermal relic of dark matter Boltzmann equation: dn n 2 − n 2 � � dt = −� σ v � eq σ v = a + bv 2 + · · · , → � σ v � = a + b (6 T / m χ ) + · · · � σ v � th ∼ 3 × 10 − 26 cm 3 / s ↔ Relic density Ω h 2 = 0 . 12 For fermion DM, typically Internal bremsstraglung: σ v f f γ ∼ 10 − 28 cm 3 / s Monochromatic gamma: σ v γγ ∼ 10 − 30 cm 3 / s Takashi Toma (IPPP) BURI 2014 14th Feb. 2014 6 / 19

  7. Model of Scalar Dark Matter Model Real singlet scalar χ (DM), Z 2 = − 1 Vector like charged fermion ψ (mediator), Z 2 = − 1, Y = − 1 Interaction: L Y = y χψ P R f + h . c . φ φ † φ + m 2 2 χ 2 + λ φ � 2 + λ χ 4! χ 4 + λ χ V = m 2 � φ † φ 2 χ 2 � φ † φ � 2 φ ( x ) = � φ � + h ( x ) After φ gets VEV: √ 2 The coupling λ should be suppressed from the constraint of direct detection. σ p = c λ 2 µ 2 χ m 2 � 7 . 6 × 10 − 46 [ cm 2 ] p χ m 4 4 π m 2 h LUX Collaboration, arXiv: 1310.8214 When m p ≪ m χ , the coupling is limited as λ � 3 . 1 × 10 − 4 . Takashi Toma (IPPP) BURI 2014 14th Feb. 2014 7 / 19

  8. Model of Scalar Dark Matter Thermal relic density of DM χχ → hh , χχ → h → f f are subdominant. The most important channel is χχ → f f mediated by ψ . The cross section is y 4 m 2 y 4 m 2 1 1 + 2 µ f f (1 + µ ) 4 v 2 σ v f f = (1 + µ ) 2 − 4 π m 2 m 2 6 π m 2 m 2 χ χ χ χ µ ≡ m 2 y 4 1 (1 + µ ) 4 v 4 + O ( v 6 ) , ψ + 60 π m 2 m 2 χ χ · when m f ≪ m χ , s-wave and p-wave can be negligible. → chiral suppression · DM relic abundance is determined by d-wave. Takashi Toma (IPPP) BURI 2014 14th Feb. 2014 8 / 19

  9. Model of Scalar Dark Matter Interpretation of d-wave CP and total angular momentum J should be conserved between initial and final states. s-wave initial state: CP=even, J = 0 → possible effective operator: O S ∼ χχ f f In our case, m f is multiplied to the operator. p-wave initial state: CP=odd, J = 1 J = 1 operator cannnot be constructed. ↔ χ � � � f γ µ f � O P ∼ χ∂ µ = 0 Note: p-wave exists for complex scalar DM. Takashi Toma (IPPP) BURI 2014 14th Feb. 2014 9 / 19

  10. Model of Scalar Dark Matter d-wave initial state: CP=even, J = 2 corresponding effective operator O D ∼ ∂ µ χ∂ ν χ T µν T µν : energy momentum tensor An example of concrete models χ is related with radiative lepton masses S. Baek, H. Okada, T. T, arXiv: 1401.6921 Takashi Toma (IPPP) BURI 2014 14th Feb. 2014 10 / 19

  11. Model of Scalar Dark Matter Gamma-ray signatures Gamma-ray Signatures Possible processes χχ → f f γ Internal bremsstrahlung T. T, arXiv:1307.6181 F. Giacchino, L. Lopez-Honorez, M.H.G. Tytgat, arXiv:1307.6480 χχ → γγ , χχ → Z γ Line spectrum A. Ibarra, T. T, M. Totzauer, S. Wild, in preparation Both gamma-ray emissions are ex- pected to be stronger than Majorana case since y is large enough. Takashi Toma (IPPP) BURI 2014 14th Feb. 2014 11 / 19

  12. Model of Scalar Dark Matter Gamma-ray signatures Internal bremsstrahlung · differential cross section α em y 4 d σ v f f γ � 2 x x = (1 − x ) ( µ + 1)( µ + 1 − 2 x ) − 4 π 2 m 2 ( µ + 1 − x ) 2 dx χ − ( µ + 1)( µ + 1 − 2 x ) � µ + 1 �� x ≡ E γ log , 2( µ + 1 − x ) 3 µ + 1 − 2 x m χ 10 1 µ + µ − ( γ ) · When µ � 4, a sharp peak appears τ + τ − ( γ ) 10 0 ¯ bb ( γ,g ) around E γ ∼ m χ x 2 dN/dx 10 -1 · � σ v f f γ � ∼ 10 − 27 cm 3 / s 10 -2 10 -3 T. Bringmann et al., arXiv:1203.1312 10 -2 10 -1 10 0 x = E/m χ Takashi Toma (IPPP) BURI 2014 14th Feb. 2014 12 / 19

  13. Model of Scalar Dark Matter Gamma-ray signatures Line spectrum χχ → γγ comes from box diagrams χ γ χ γ χ γ f ψ f ψ f f ψ ψ f ψ f ψ χ γ χ γ χ γ χχ → Z γ Z γ is related with γγ � 3 m 2 � 1 − 1 � σ v Z γ � ≈ 2 tan 2 θ W Z � σ v γγ � 4 m 2 χ The cross sections are typically σ v γγ ≈ σ v Z γ ≈ 10 − 28 or 10 − 29 cm 3 / s when m χ � 1000 GeV . Takashi Toma (IPPP) BURI 2014 14th Feb. 2014 13 / 19

  14. Model of Scalar Dark Matter Gamma-ray signatures Calculation of χχ → γγ In the limit of v → 0, it analytically can be calculated. Initial state: p 1 = p 2 = ( m χ , 0 ) ≡ p , Final state: k 1 , k 2 Flow of calculation G. Bertone et al. arXiv:0904.1442 1 In general, i M is decomposed as M µν = p µ p ν A + k µ 1 B + k µ 1 k ν 2 k ν 2 C + · · · + g µν A loop where i M = i ǫ ∗ µ ( k 1 ) ǫ ∗ ν ( k 2 ) M µν . only A loop remains. 2 Simplify A loop by Passarino-Veltman reduction 3 cross section: σ v = α 2 em α 2 y |A loop ( µ ) | 2 2 π m 2 χ Takashi Toma (IPPP) BURI 2014 14th Feb. 2014 14 / 19

  15. Model of Scalar Dark Matter Gamma-ray signatures � 1 � µ − 1 � � − 2 µ Arcsin 2 µ = m 2 ψ / m 2 A loop = 2 − 2 log √ µ , χ > 1 µ S. Tulin et al. arXiv:1208.0009 The behavior is not good at µ ∼ 1. divergence 8 Ref. result Our result 6 4 A loop 2 0 -2 1 1.5 2 2.5 3 3.5 4 µ Takashi Toma (IPPP) BURI 2014 14th Feb. 2014 15 / 19

  16. Model of Scalar Dark Matter Gamma-ray signatures Energy spectrum χχ -> γγ χχ -> γγ χχ -> Z γ χχ -> Z γ total spectrum total spectrum ∆ E/E=0.1 ∆ E/E=0.01 1 1 dN γ /dx dN γ /dx 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 x x GAMMA400 DAMPE Fermi CTA Energy range [GeV] 0.1-3000 5-10000 0.1-300 > 10 Angular res [deg] ∼ 0.01 0.1 at 100 GeV 0.1 0.1 Energy res [%] ∼ 1 ∼ 1 at 800 GeV 10 15 2018 ∼ 2015 ∼ Takashi Toma (IPPP) BURI 2014 14th Feb. 2014 16 / 19

  17. Model of Scalar Dark Matter Gamma-ray signatures Fitting to Gamma-ray flux 53 Fermi data points are used. constraint from thermal relic density of DM : Ω h 2 = 0 . 12 three parameters : m χ , µ , y . → one of them is fixed by Ω h 2 = 0 . 12 → the degree of freedom is 2. m χ = 155 GeV , µ = 2 . 05 , y = 1 . 82 , → � σ v f f γ � = 4 . 7 × 10 − 27 cm 3 / s 10 -4 9 Fermi�data�90.0%CL Fermi�data Fermi�data�68.3%CL 2 d Φ γ /dE γ � [GeVcm -2 s -1 sr -1 ] Background 8 y L =1.0 VIB+FSR+Background y L =1.5 VIB+FSR 7 y L =2.0 10 -5 y L =3.0 y L =4.0 6 µ 5 10 -6 4 3 E γ 2 10 -7 1 10 0 10 1 10 2 10 3 100 120 140 160 180 200 220 E γ �[GeV] m χ [GeV] Takashi Toma (IPPP) BURI 2014 14th Feb. 2014 17 / 19

  18. Model of Scalar Dark Matter Constraint Constraint from Anomalous Magnetic Moment Experiments δ a e = a e ( SM ) − a e ( exp ) = 1 . 06 × 10 − 12 δ a µ = a µ ( SM ) − a µ ( exp ) = 25 . 5 × 10 − 10 From Yukawa interaction 2 + 3 µ − 6 µ 2 + µ 3 + 6 µ log µ y 2 m 2 f δ a f = (4 π ) 2 m 2 6(1 − µ ) 4 χ using the fitting parameters δ a e = 9 . 4 × 10 − 15 , δ a µ = 4 . 0 × 10 − 10 → satisfy the constraint. But, if we have the Yukawa interaction with different flavor at the same time, LFV such as µ → e γ gives a strong constraint. Takashi Toma (IPPP) BURI 2014 14th Feb. 2014 18 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend