game theoretic network bandwidth distribution for self
play

Game-Theoretic Network Bandwidth Distribution for Self- Adaptive - PowerPoint PPT Presentation

Game-Theoretic Network Bandwidth Distribution for Self- Adaptive Cameras Gautham Nayak Seetanadi 1 Martina Maggio, Karl-Erik rzen 1 Luis Almeida 2 Luis Oliveira 3 1 Department of Automatic Control, Lund University 2 Universidade do Porto /


  1. Game-Theoretic Network Bandwidth Distribution for Self- Adaptive Cameras Gautham Nayak Seetanadi 1 Martina Maggio, Karl-Erik Å rzen 1 Luis Almeida 2 Luis Oliveira 3 1 Department of Automatic Control, Lund University 2 Universidade do Porto / Faculdade de Engenharia 3 Department of Computer Science, University of Pittsburgh

  2. Introduction • Multiple adaptive camera network • Game-theoretic resource manager • Improved bandwidth utilisation • Local PI Control • Convergence guarantees on bandwidth

  3. Motivation • Problem of Allocation • Finite Resource • Multiple Entities • Fair Bandwidth Distribution • Global Threshold Limit • Successfully applied to Multicore systems [1] [1] M.Maggio et al, “A game-theoretic resource manager for rt applications”, In Euromicro Conference on Real-Time Systems, 2013

  4. Decentralised Resource Allocation • Resource Manager Allocates Resources • Cameras Choose Service Level • Change Quality Data Control Camera 1 Camera 2 Camera n λ 1 λ 2 λ n Resource Manager Ethernet

  5. Decentralised Resource Allocation • Resource Manager Allocates Resources • Cameras Choose Service Level • Change Quality • Determines Responsibility λ i Data Control Camera 1 Camera 2 Camera n λ 1 λ 2 λ n Resource Manager Ethernet

  6. Resource Manager • Game Theory Based • Matching function determines fairness f p,w = B p,w − s p,w B p,w

  7. Resource Manager

  8. Resource Manager t = 0 t = 1 t = 2 Manager 50% Camera 1 50% Camera 2

  9. Resource Manager t = 0 t = 1 t = 2 Manager 50% 75% Camera 1 50% 25% Camera 2

  10. Camera Original Frames Encoded Frames

  11. Camera Can be • Camera generates an image of size -ve or +ve s p,w = 0 . 01 · q p,w · s p, max + δ s p,w , • Adaptable quality • Normalised error

  12. Camera Loop Allocated Frame Bandwidth Error Quality Size ( B p,w ) ( e p,w ) ( q p,w ) ( s p,t w ) Controller P Camera ( k p , k i ) − 1

  13. Network Allocation • SDN using Flexible Time Triggered - SE [2] t = 0 t = 1 t = 2 Manager Camera 1 Camera 2 [2] P .Pedreiras and L.Almeida, “The flexible time triggered paradigm. An approach to QOS management in distributed real-time systems”, 2003

  14. NETWORK ALLOCATION • SDN using Flexible Time Triggered - SE [2] t = 0 t = 1 t = 2 Manager I 1 , 1 I 1 , 2 Camera 1 Camera 2 I 2 , 1 I 2 , 2 [2] P .Pedreiras and L.Almeida, “The flexible time triggered paradigm. An approach to QOS management in distributed real-time systems”, 2003

  15. NETWORK ALLOCATION • SDN using Flexible Time Triggered - SE [2] I 1 , 2 : q 1 , 2 → s 1 , 2 B 1 ,t =0 → B 1 ,w =2 t = 0 t = 1 t = 2 Manager I 1 , 1 I 1 , 2 Camera 1 Camera 2 I 2 , 1 I 2 , 2 [2] P .Pedreiras and L.Almeida, “The flexible time triggered paradigm. An approach to QOS management in distributed real-time systems”, 2003

  16. NETWORK ALLOCATION • SDN using Flexible Time Triggered - SE [2] I 1 , 2 : q 1 , 2 → s 1 , 2 B 1 ,t =0 → B 1 ,w =2 t = 0 t = 1 t = 2 Manager I 1 , 1 I 1 , 2 I 1 , 4 I 1 , 5 Camera 1 Camera 2 I 2 , 1 I 2 , 2 I 2 , 3 I 2 , 4 [2] P .Pedreiras and L.Almeida, “The flexible time triggered paradigm. An approach to QOS management in distributed real-time systems”, 2003

  17. Implementation • Cameras • Logitech c270. COTS • OpenCV • Network • Deadlines enforced using Flexible Time Triggered Switched Ethernet (FTT-SE) • i7-4790 8 core PC running Fedora

  18. Experimental Setup Blue Camera Red Camera

  19. Assessment • Criteria? • Fair Bandwidth Usage (Manager) • Complete Bandwidth Utilisation (Camera) • SSIM (Structural Similarity Index) • SSIM

  20. Experiments Resource Allocator Camera Equal Bandwidth Distribution No Adaptation Equal Bandwidth Distribution DARTES Model [2] Equal Bandwidth Distribution PI Controller Game-Theoretic RA PI Controller [2] J. Silvestre-Blanes, L. Almeida, R. Marau, and P . Pedreiras. “Online qos management for multimedia real-time transmission in industrial networks.” IEEE Transactions on Industrial Electronics, 58(3), March 2011

  21. Experiment 1 AllocBW Camera 1 AllocBW Camera 2 InstBW Camera 1 InstBW Camera 2 30 . 0 BW [Mbps] 20 . 0 10 . 0 0 . 0 0 10 20 30 40 50 60 70 80 Time [s] Resource Allocator Camera Equal Bandwidth Distribution No Adaptation

  22. Experiment 1 AllocBW Camera 1 AllocBW Camera 2 InstBW Camera 1 InstBW Camera 2 30 . 0 BW [Mbps] 20 . 0 10 . 0 0 . 0 0 10 20 30 40 50 60 70 80 Time [s] Resource Allocator Camera Equal Bandwidth Distribution No Adaptation

  23. Experiment 1 AllocBW Camera 1 AllocBW Camera 2 InstBW Camera 1 InstBW Camera 2 30 . 0 BW [Mbps] 20 . 0 10 . 0 0 . 0 0 10 20 30 40 50 60 70 80 Time [s] Resource Allocator Camera Equal Bandwidth Distribution No Adaptation

  24. Experiment 2 AllocBW Camera 1 AllocBW Camera 2 InstBW Camera 1 InstBW Camera 2 4 . 0 3 . 0 BW [Mbps] 2 . 0 1 . 0 0 . 0 0 10 20 30 40 50 60 70 80 90 100 110 120 Time [s] Resource Allocator Camera Equal Bandwidth Distribution DARTES Model

  25. Experiment 2 AllocBW Camera 1 AllocBW Camera 2 InstBW Camera 1 InstBW Camera 2 4 . 0 3 . 0 BW [Mbps] 2 . 0 1 . 0 0 . 0 0 10 20 30 40 50 60 70 80 90 100 110 120 Time [s] Resource Allocator Camera Equal Bandwidth Distribution DARTES Model

  26. Experiment 3 AllocBW Camera 1 AllocBW Camera 2 InstBW Camera 1 InstBW Camera 2 4 . 0 3 . 0 BW [Mbps] 2 . 0 1 . 0 0 . 0 0 10 20 30 40 50 60 70 80 90 100 110 120 Time [s] Resource Allocator Camera Equal Bandwidth Distribution PI Controller

  27. Experiment 3 AllocBW Camera 1 AllocBW Camera 2 InstBW Camera 1 InstBW Camera 2 4 . 0 3 . 0 BW [Mbps] 2 . 0 1 . 0 0 . 0 0 10 20 30 40 50 60 70 80 90 100 110 120 Time [s] Resource Allocator Camera Equal Bandwidth Distribution PI Controller

  28. Experiment 4 AllocBW Camera 1 AllocBW Camera 2 InstBW Camera 1 InstBW Camera 2 4 . 0 3 . 0 BW [Mbps] 2 . 0 1 . 0 0 . 0 0 5 10 15 20 25 30 35 40 45 50 55 60 Time [s] Resource Allocator Camera Game-Theoretic RA PI Controller

  29. Experiment 4 AllocBW Camera 1 AllocBW Camera 2 InstBW Camera 1 InstBW Camera 2 4 . 0 3 . 0 BW [Mbps] 2 . 0 1 . 0 0 . 0 0 5 10 15 20 25 30 35 40 45 50 55 60 Time [s] Resource Allocator Camera Game-Theoretic RA PI Controller

  30. SSIM SSIM with PI controller − SSIM with DARTES model 0 , 1 Camera 1 Camera 2 0 , 05 0 0 200 400 600 800 1000 1200 1400 1600 Frame Number

  31. SSIM SSIM with PI controller − SSIM with DARTES model 0 , 1 Camera 1 Camera 2 0 , 05 0 0 200 400 600 800 1000 1200 1400 1600 Frame Number

  32. Conclusions • CPU allocation strategy • Need for adaptation • PI control advantages • Game-Theoretic resource manager e ffi ciency • Convergence guarantees

  33. Future Work • Time triggered network manager decisions have drawbacks • Moving to event triggered

  34. gautham@control.lth.se Resource Allocator Camera AllocBW Camera 1 AllocBW Camera 2 AllocBW Camera 1 AllocBW Camera 2 InstBW Camera 1 InstBW Camera 2 InstBW Camera 1 InstBW Camera 2 4 . 0 4 . 0 3 . 0 3 . 0 BW [Mbps] BW [Mbps] 2 . 0 2 . 0 1 . 0 1 . 0 0 . 0 0 . 0 0 10 20 30 40 50 60 70 80 90 100 110 120 0 10 20 30 40 50 60 70 80 90 100 110 120 Time [s] Time [s] AllocBW Camera 1 AllocBW Camera 2 InstBW Camera 1 InstBW Camera 2 4 . 0 3 . 0 BW [Mbps] 2 . 0 1 . 0 0 . 0 0 5 10 15 20 25 30 35 40 45 50 55 60 Time [s]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend