g l p optimal coefficients rank 1 lattice rules
play

G.l.p., optimal coefficients, rank-1 lattice rules, ... Dirk - PowerPoint PPT Presentation

Lattice rules Lattice sequences Cos space + tent transform Conclusions G.l.p., optimal coefficients, rank-1 lattice rules, ... Dirk Nuyens Department of Computer Science KU Leuven, Belgium RICAM Special Semester on Algebra and Number


  1. Lattice rules Lattice sequences Cos space + tent transform Conclusions G.l.p., optimal coefficients, rank-1 lattice rules, ... Dirk Nuyens Department of Computer Science KU Leuven, Belgium RICAM Special Semester on Algebra and Number Theory Workshop 1: Uniform distribution and quasi-Monte Carlo methods Austrian Academy of Sciences, Linz October 14–18, 2013 Lattice rules — Dirk Nuyens (KU Leuven) 1/41

  2. Lattice rules Lattice sequences Cos space + tent transform Conclusions Definition Rank-1 lattice rules For a given generating vector z ∈ Z d N take � N − 1 � z k mod N � � Q N ( f ; z ) := 1 [ 0 , 1 ) d f ( x ) d x . f ≈ N N k = 0 Korobov (1959), Sloan, Joe, Niederreiter, Kuo, Dick, ... Components z j are taken relatively prime to N ( → permutations of k / N ). Here: N = 17, z = ( 1 , 5 ) . Looks good. ♣ how to generate these points: N=17; z=[1; 5]; P = mod(z*(0:N-1), N)/N; But, how to pick “good” z ? ♣ goodandbad.m; try z = [1; 1]; Lattice rules — Dirk Nuyens (KU Leuven) 2/41

  3. Lattice rules Lattice sequences Cos space + tent transform Conclusions Definition Rank-1 lattice rules For a given generating vector z ∈ Z d N take � N − 1 � z k mod N � � Q N ( f ; z ) := 1 [ 0 , 1 ) d f ( x ) d x . f ≈ N N k = 0 Korobov (1959), Sloan, Joe, Niederreiter, Kuo, Dick, ... Components z j are taken relatively prime to N ( → permutations of k / N ). Here: N = 17, z = ( 1 , 5 ) . Looks good. ♣ how to generate these points: N=17; z=[1; 2]; P = mod(z*(0:N-1), N)/N; But, how to pick “good” z ? ♣ goodandbad.m; try z = [1; 1]; Lattice rules — Dirk Nuyens (KU Leuven) 2/41

  4. Lattice rules Lattice sequences Cos space + tent transform Conclusions Definition Rank-1 lattice rules For a given generating vector z ∈ Z d N take � N − 1 � z k mod N � � Q N ( f ; z ) := 1 [ 0 , 1 ) d f ( x ) d x . f ≈ N N k = 0 Korobov (1959), Sloan, Joe, Niederreiter, Kuo, Dick, ... Components z j are taken relatively prime to N ( → permutations of k / N ). Here: N = 17, z = ( 1 , 5 ) . Looks good. ♣ how to generate these points: N=17; z=[1; 5]; P = mod(z*(0:N-1), N)/N; But, how to pick “good” z ? ♣ goodandbad.m; try z = [1; 1]; Lattice rules — Dirk Nuyens (KU Leuven) 2/41

  5. Lattice rules Lattice sequences Cos space + tent transform Conclusions Worst-case error A Koskma–Hlawka error bound Suppose f can be represented as � � ˆ | ˆ f ( h ) exp ( 2 π i h · x ) where f ( x ) = f ( h ) | < ∞ , h ∈ Z d h ∈ Z d then N − 1 � � Q N ( f ; z ) − I ( f ) = 1 ˆ f ( h ) exp ( 2 π i h · z k / N ) − ˆ f ( 0 ) N k = 0 h ∈ Z d Lattice rules — Dirk Nuyens (KU Leuven) 3/41

  6. Lattice rules Lattice sequences Cos space + tent transform Conclusions Worst-case error A Koskma–Hlawka error bound Suppose f can be represented as � � ˆ | ˆ f ( h ) exp ( 2 π i h · x ) where f ( x ) = f ( h ) | < ∞ , h ∈ Z d h ∈ Z d then � � N − 1 � � 1 ˆ exp ( 2 π i ( h · z ) k / N ) Q N ( f ; z ) − I ( f ) = f ( h ) N k = 0 0 � = h ∈ Z d Lattice rules — Dirk Nuyens (KU Leuven) 3/41

  7. Lattice rules Lattice sequences Cos space + tent transform Conclusions Worst-case error A Koskma–Hlawka error bound Suppose f can be represented as � � ˆ | ˆ f ( h ) exp ( 2 π i h · x ) where f ( x ) = f ( h ) | < ∞ , h ∈ Z d h ∈ Z d then � ˆ Q N ( f ; z ) − I ( f ) = f ( h ) 1 h · z ≡ 0 0 � = h ∈ Z d Lattice rules — Dirk Nuyens (KU Leuven) 3/41

  8. Lattice rules Lattice sequences Cos space + tent transform Conclusions Worst-case error A Koskma–Hlawka error bound Suppose f can be represented as � � ˆ | ˆ f ( h ) exp ( 2 π i h · x ) where f ( x ) = f ( h ) | < ∞ , h ∈ Z d h ∈ Z d then � f ( h ) r α, γ ( h ) r − 1 ˆ Q N ( f ; z ) − I ( f ) = α, γ ( h ) 1 h · z ≡ 0 � �� � 0 � = h ∈ Z d = 1 Lattice rules — Dirk Nuyens (KU Leuven) 3/41

  9. Lattice rules Lattice sequences Cos space + tent transform Conclusions Worst-case error A Koskma–Hlawka error bound Suppose f can be represented as � � ˆ | ˆ f ( h ) exp ( 2 π i h · x ) where f ( x ) = f ( h ) | < ∞ , h ∈ Z d h ∈ Z d then � | ˆ f ( h ) | r α, γ ( h ) r − 1 | Q N ( f ; z ) − I ( f ) | ≤ α, γ ( h ) 1 h · z ≡ 0 0 � = h ∈ Z d Lattice rules — Dirk Nuyens (KU Leuven) 3/41

  10. Lattice rules Lattice sequences Cos space + tent transform Conclusions Worst-case error A Koskma–Hlawka error bound Suppose f can be represented as � � ˆ | ˆ f ( h ) exp ( 2 π i h · x ) where f ( x ) = f ( h ) | < ∞ , h ∈ Z d h ∈ Z d then   1 / q   1 / p  � �   | ˆ f ( h ) | p r p r − q    | Q N ( f ; z ) − I ( f ) | ≤ α, γ ( h ) α, γ ( h )   h ∈ Z d 0 � = h ∈ Z d � �� � h · z ≡ 0 � �� � =: � f � p ,α, γ =: e ( z , N ; �·� p ,α, γ ) for some positive function r α, γ ( h ) . Lattice rules — Dirk Nuyens (KU Leuven) 3/41

  11. Lattice rules Lattice sequences Cos space + tent transform Conclusions Worst-case error The worst-case error The worst-case error in using Q for f ∈ F to approximate I ( f ) � � � Q ( f ) − I ( f ) � sup e ( Q ; F ) := ⇒ | Q ( f ) − I ( f ) | ≤ � f � F e ( Q ; F ) . f ∈F � f � F ≤ 1 For the Korobov space, with weights γ u ,   p � � � f h | p r p � f � p | ˆ  γ − 1 | ˆ f h | p | h j | α  p ,α, γ = = α, γ ( h ) < ∞ . u ( h ) h ∈ Z d j ∈ u ( h ) h ∈ Z d Riesz representer of the error for lattice rule when p > 1: � r − q α, γ ( h ) exp ( 2 π i h · x ) . ξ ( x ) = 0 � = h ∈ Z d Then e ( z , N ; � · � p ,α, γ ) = Q N ( ξ ; z ) 1 / q . Lattice rules — Dirk Nuyens (KU Leuven) 4/41

  12. Lattice rules Lattice sequences Cos space + tent transform Conclusions Worst-case error Calculating the worst-case error ◮ Korobov space with product weights γ u = � j ∈ u γ j : d � � � � exp ( 2 π i hx ) 1 + γ q χ ( x ) = − 1 + where j ω ( x j ) , ω ( x ) = . | h | α q j = 1 0 � = h ∈ Z Need α > 1 / q . ◮ The R -criterion → star-discrepancy: � exp ( 2 π i hx ) where χ ( x ) = · · · ω ( x ) = . | h | α q − N 2 , N � � 0 � = h ∈ 2 Need α > 0. This corresponds to truncated Fourier series. Lattice rules — Dirk Nuyens (KU Leuven) 5/41

  13. Lattice rules Lattice sequences Cos space + tent transform Conclusions Component-by-component The component-by-component algorithm Brute force search for good z ∈ Z d N would cost exponential in d . Therefore (Sloan, Joe, Kuo, ... and also Korobov) : for s = 1 to d do for all z s ∈ Z × N do calculate e s ( z 1 , . . . , z s − 1 , z s ) end for z s = argmin e s ( z 1 , . . . , z s − 1 , z ) z ∈ Z × N end for Cost of O ( d 2 N 2 ) . ◮ Rules with optimal rate of convergence in weighted Korobov space, i.e., O ( N − α + δ ) , δ > 0. ◮ Rules with optimal rate of convergence in weighted Sobolev space, i.e., O ( N − 1 + δ ) , δ > 0. Kuo (2003), Dick (2004) Lattice rules — Dirk Nuyens (KU Leuven) 6/41

  14. Lattice rules Lattice sequences Cos space + tent transform Conclusions Fast component-by-component construction Fast component-by-component construction Component-by-component by using the recursion e s (( z ∗ 1 , . . . , z ∗ s − 1 , z s ) , N ; || · || p ,α, γ ) q s − 1 ) , N ; || · || p ,α, γ ) q + θ s ( z s ) . = e s − 1 (( z ∗ 1 , . . . , z ∗ Write ω ( k · z j ) := ω ( x k , j ) = ω ( { kz j / N } ) = ω (( kz j mod N ) / N ) � r − q α ( h ) exp ( 2 π i hkz j / N ) , = 0 � = h ∈ Z Lattice rules — Dirk Nuyens (KU Leuven) 7/41

  15. Lattice rules Lattice sequences Cos space + tent transform Conclusions Fast component-by-component construction For prime N ... where N − 1 N − 1 � � � 1 Y u ( k ) ω ( k · z s ) = 1 θ s ( z s ) = γ u ∪{ s } Y s ( k ) ω ( k · z s ) N N u ⊆{ 1 : s − 1 } k = 0 k = 0 N − 1 � = 1 N Y s ( 0 ) ω ( 0 ) + 1 Y s ( k ) ω ( k · z s ) N k = 1 � �� � convolution with � � � r − q α ( h j ) exp ( 2 π i h j z ∗ ω ( k · z ∗ Y u ( k ) = j k / N ) = j ) , h u ∈ Z | u | j ∈ u j ∈ u ∗ � Y s ( k ) = γ u ∪{ s } Y u ( k ) . u ⊆{ 1 : s − 1 } Lattice rules — Dirk Nuyens (KU Leuven) 8/41

  16. Lattice rules Lattice sequences Cos space + tent transform Conclusions Fast component-by-component construction Cyclic structure → circulant matrix When N is prime Z N = Z × N ∪ { 0 } ... and Ω n is basically just homomorphic to the multiplication table of the group Z × N . E.g., for N = 7: 1 2 3 4 5 6 · 1 1 2 3 4 5 6 2 2 4 6 1 3 5 3 3 6 2 5 1 4 4 4 1 5 2 6 3 5 5 3 1 6 4 2 6 6 5 4 3 2 1 Lattice rules — Dirk Nuyens (KU Leuven) 9/41

  17. Lattice rules Lattice sequences Cos space + tent transform Conclusions Fast component-by-component construction Cyclic structure → circulant matrix When N is prime Z N = Z × N ∪ { 0 } ... and Ω n is basically just homomorphic to the multiplication table of the group Z × N . E.g., for N = 7: 1 2 3 4 5 6 · 1 1 2 3 4 5 6 2 2 4 6 1 3 5 3 3 6 2 5 1 4 4 4 1 5 2 6 3 5 5 3 1 6 4 2 6 6 5 4 3 2 1 Multiplication modulo N can be much easier using a representation in powers of a generator g ... g α g β ≡ g α + β ( mod ϕ ( N )) ( mod N ) . Lattice rules — Dirk Nuyens (KU Leuven) 9/41

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend