fuzzy objects in noncommutative geometry and their
play

Fuzzy Objects in Noncommutative Geometry and Their Applications - PowerPoint PPT Presentation

Fuzzy Objects in Noncommutative Geometry and Their Applications Shinpei Kobayashi (Gunma National College of Technology) 2012/11/12, JGRG22 @ RESCEU, University of Tokyo Motivation Resolution of singularity String inspired


  1. Fuzzy Objects in Noncommutative Geometry and Their Applications � Shinpei Kobayashi (Gunma National College of Technology) 2012/11/12, JGRG22 @ RESCEU, University of Tokyo �

  2. Motivation � ¡ Resolution of singularity ¡ String inspired ¡ non-BPS D2/D0-system ¡ 2-dimensional space with constant magnetic flux ¡ (an effective theory of ) quantum gravity

  3. Realization of Noncommutativity � ¡ Noncommutativity between space coordinates : constant parameter [ x, y ] = i θ , θ ¡ a realization: Wick-Voros product ✓ @ ◆ @ � f ( z 0 , ¯ z 0 ) g ( z 00 , ¯ z 00 ) ( f ? g )( z, ¯ z ) = exp � @ ¯ @ z 00 z 0 � z 0 = z 00 = z [ z, ¯ z ] = z ? ¯ z − ¯ z ? z = 1 ✓ ◆ z = x + iy z = x − iy , ¯ √ √ 2 θ 2 θ

  4. Field Theory on noncommutative space � commutative: � Z z φ + m ⇣ ⌘ 2 φ 2 + · · · dtd 2 x S = ∂ z φ∂ ¯ noncommutative: � Z z � + m ⇣ ⌘ dtd 2 x S = @ z � ? @ ¯ 2 � ? � + · · ·

  5. Fuzzy Objects � Nontrivial Solutions in Noncommutative Geometry �

  6. Noncommutative Solitons � ¡ scalar field theory on NC plane: GMS solitons [ Gopakumar- Minwalla- Strominger, Kraus-Larsen, …] Z d 2 zV ? ( Φ ) E = D V ? ( Φ ) = b 2 2 Φ ? Φ + b 3 3 Φ ? Φ ? Φ + · · · ¡ circular symmetric, connection to D-branes � 10 8 6 2 4 2 0 0 -2 -2 0 0 -2 2 2

  7. Weyl-Wigner Correspondence � ∞ X function � f (¯ z, z ) = mn ¯ Tay f z m z n n =0 Weyl projection � ∞ ˆ X a † , ˆ a † m ˆ operator � f (ˆ a ) = mn ˆ Tay a n f n =0

  8. Weyl-Wigner Correspondence � algebra � algebra � ˆ function: operator: f ( x, y ) f (ˆ x, ˆ y ) star product: product f ? g ˆ with an ordering: f · ˆ g a † ] = 1 [ x, y ] = i θ [ˆ a, ˆ [ˆ x, ˆ y ] = i θ operators which act on the Fock space of a harmonic oscillator �

  9. Weyl-Wigner Correspondence � ∞ X function � f (¯ z, z ) = mn ¯ Tay f z m z n n =0 Weyl projection � ∞ ˆ X a † , ˆ a † m ˆ operator � f (ˆ a ) = mn ˆ Tay a n f n =0

  10. Weyl-Wigner Correspondence � z, z ) = h z | ˆ function � f (¯ f | z i inverse Weyl projection � a | z i = z | z i : coherent state � ˆ ∞ ˆ X a † , ˆ a † m ˆ operator � f (ˆ a ) = mn ˆ Tay a n f n =0

  11. Weyl-Wigner Correspondence � In operator formalism: ˆ N | n i = n | n i

  12. Projection operators as NC solitons � [GMS (2000)] � 0 = @ V ? ¡ EOM: @ Φ = b 2 Φ + b 3 Φ ? Φ + b 4 Φ ? Φ ? Φ + · · · ¡ non-trivial sln: with p 2 Φ = λ ∗ p n ( z, ¯ z ) n ( z, ¯ z ) = p n ( z, ¯ z ) projection operator � p n = | n i h n | ˆ r 2 n p n ( r ) = h z | n i h n | z i = e − r 2 :circular symmetric � 2 θ n !(2 θ ) n

  13. Fuzzy Disc [ Lizzi, ¡Vitale, ¡Zampini (2003)] � ¡ Def.: finite dim. truncation of a noncommutative plane ¡ Two parameters: ¡ noncommutativity: θ ¡ fuzzyness : N ¡ applications: ¡ matrix model ¡ quantum Hall effect

  14. A Fuzzy Disc ( N=10, θ =1 ) � A 10 = ˆ ˆ P 10 ˆ A ˆ P 10 ˆ P 10 = ˆ p 0 + ˆ p 1 + · · · + ˆ p 9 p 0 + p 1 + · · · + p 9 9 r 2 n e − r 2 X = 2 θ n !(2 θ ) n n =0

  15. GMS solitons and fuzzy disc � N=4 case � ˆ ˆ ˆ p 1 p 2 p 3 p 0 = | 0 i h 0 | ˆ

  16. Another orthonormal basis : angle states? � ¡ number basis: concentric cutting of space ¡ ~ radius ˆ x 2 + ˆ ( ˆ p N y 2 ) ˆ N ∼ ¡ another basis: radial cutting of space ¡ ~ angle ˆ ϕ

  17. Angles in the fuzzy disc � SK-Asakawa, arXiv:1206.6602 �

  18. Angle Operator and States � N − 1 with help of X ¡ The angle operator: ϕ m | ϕ m i h ϕ m | ϕ = ˆ Pegg-Barnett m =0 phase operator � ¡ Eigen states of the angle operator: ϕ | ϕ m i = ϕ m | ϕ m i ˆ N − 1 1 ¡ Relation to the number state e in ϕ m | n i X | ϕ m i = p N n =0 ¡ Orthonormality: h ϕ m | ϕ n i = δ mn ¡ Angular projection operators: π m = | ϕ m i h ϕ m | ˆ ϕ m = 2 π N m → angular “delta function” peaked at �

  19. � Two descriptions of fuzzy disc � ¡ baum-kuchen vs shortcake ˆ π 1 ˆ p 0 ˆ ˆ π 2 π 0 ˆ ˆ p 1 p 3 ˆ π 3 ˆ p 2 N − 1 N − 1 X X p n = ˆ ˆ π m n =0 m =0

  20. angular projection operators � N − 1 r m + n ( r, ϕ ) = 1 e − r 2 π ( N ) X m ! n !(2 θ ) m + n e − i ( m − n )( ϕ − ϕ k ) 2 θ k p N m,n =0 ˆ π 1 ˆ ˆ π 0 π 2 ˆ π 3 N=4 case � not concentric, but fan-shaped, like pieces of cake �

  21. Other fuzzy objects: e.g.) fuzzy Annulus � P M ˆ p M + ˆ p M +1 + · · · + ˆ p M + N − 1 N := ˆ any set of N orthonormal operators is allowed for truncation �

  22. Noncommutative Solitons as D0-branes � ¡ scalar field on the NC plane = tachyon filed on a non-BPS D2-brane 10 ¡ The solution 8 Φ = λ ∗ ˆ 6 p n 2 4 2 = a D0-brane (rank → same tension) 0 p n = 1 ˆ 0 -2 -2 0 0 -2 2 2 ¡ Same thing can be said to our case: the solution also can be seen as a D0-brane, Φ = λ ∗ ˆ π m with very different shape (fan-shaped) ¡ Commutative limit (with N θ fixed), angular NC soliton becomes thinner and thinner (A D0-brane is twisted into a string!)

  23. Angular NC Solitons in Gravity � S = − Λ E ? = det ? E = 1 Z 3! ✏ µ ⌫⇢ ✏ abc E a µ ? E b ⌫ ? E c dtd 2 z E ? ⇢ κ 2 ✏ µ ⌫⇢ ✏ abc { E b ⌫ , E c ⇢ } ? = 0  α 0 π ( N )   E 0  0 0 0 0 0 0 α 1 π ( N ) E a E 1  = µ = 0 0  0 0  1  1   E 2 α 2 π ( N ) 0 0 0 0 2 2 0 π (3) 1 π (3) 2 π (3) ds 2 = − α 2 0 dt 2 + α 2 1 dx 2 + α 2 2 dy 2 " √ # k ) + r 2 2 r 3 k ) + r 4 k ( r, ϕ ) = 1 1 + 2 r n √ o π (3) 3 e − r 2 / θ θ 1 / 2 cos( ϕ − ϕ (3) 2 cos[2( ϕ − ϕ (3) θ 3 / 2 cos( ϕ − ϕ (3) 1 + k )] + θ 2 θ

  24. Experiment with laser � ¡ Gaussian beam �

  25. Experiment with laser � ¡ Laguerre-Gaussian beam � GMS solitons � angular NC solitons �

  26. Noncommutative Solitons with Time-Dependence �

  27. Weyl-Wigner Correspondence � algebra � algebra � ˆ function: operator: f ( x, y ) f (ˆ x, ˆ y ) star product: product f ? g ˆ with an ordering: f · ˆ g a † ] = 1 [ x, y ] = i θ y ] = i θ [ˆ a, ˆ [ˆ x, ˆ operators which act on the Fock space no restriction as long as � [ˆ x, ˆ y ] = i θ of a harmonic oscillator �

  28. Noncommutative Solitons with Time-Dependence � ¡ Time-dependent Harmonic Oscillator e.g., p 2 2 m ( t ) + 1 ˆ ˆ 2 m ( t ) ω 2 ( t )ˆ x 2 H ( x, p, t ) = → we can solve this system analytically by the LR method �

  29. Lewis-Reisenfeld Method � ¡ Time-dependent Schroedinger equation i ~ ∂ ∂ t ψ = ˆ H ψ ¡ Invariant operator ˆ I d ˆ dt = ∂ ˆ ∂ t + 1 I I i ~ [ˆ I, ˆ H ] = 0 ¡ Eigenvalue problem ˆ I φ n ( x, p, t ) = λ n φ n ( x, p, t ) ψ ( x, p, t ) = e i ✏ ( t ) φ ( x, p, t ) ✓ ◆ i ~ @ @ t � ˆ ~ ˙ ✏ = h � n ( t ) | | � n ( t ) i H

  30. Time-Dependent NC Solitons � ¡ general, quadratic, time-dependent Hamiltonian [Choi-Gweon (2004)] � → apply to NC solitons ˆ H (ˆ x, ˆ y, t ) x 2 + B ( t )(ˆ y 2 + D ( t )ˆ = A ( t )ˆ x ˆ y + ˆ y ˆ x ) + C ( t )ˆ x + E ( t )ˆ y + F ( t ) ¡ creation and annihilation operator � (" √ # ) r 1 2 ρ + i 2 B ρ − ˙ k ρ a = ˆ (ˆ x − x p ( t )) + i ρ (ˆ y − y p ( t )) θ k 1 / 2 2 A (" √ # ) r 1 2 ρ − i 2 B ρ − ˙ k ρ a † = ˆ (ˆ x − x p ( t )) − i ρ (ˆ y − y p ( t )) θ k 1 / 2 2 A they satisfy � a † ] = 1 [ˆ a, ˆ

  31. Time-Dependent NC Solitons � [SK, in progress] � ¡ time-dependent circular symmetric solitons � | φ n , t i h φ n , t | e − | ζ ( t ) | 2 | ζ ( t ) | 2 n ! ( � 2 ) 1 ✓ 2 B ρ − ˙ ◆ k ρ | ζ ( t ) | 2 = 4 ρ 2 ( x − x p ( t )) 2 + ( x − x p ( t )) + ρ ( y − y p ( t )) θ k 1 / 2 2 A

  32. Time-Dependent NC Solitons � [SK, in progress] � e.g., Caldirola-Kanai oscillator x 2 + e − γ t ˆ ˆ H = e γ t ˆ y 2 t = 1 / γ

  33. Summary � ¡ The fuzzy disc: ¡ a disc-shaped, finite region in the NC plane ¡ a fuzzy approximation by θ ¡ Introduction of angles to the fuzzy disc ¡ angle projection operator and angle states ¡ directly relates the boundary to the bulk ¡ Application ¡ angular NC scalar solitons & fan-shaped D-branes ¡ angular NC gravitational solitons ¡ laser physics ¡ Time-dependent noncommutative solitons exist

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend