fuzzy logic
play

FUZZY LOGIC Felix Distel Dresden, WS 2012/13 About the Course - PowerPoint PPT Presentation

Faculty of Computer Science Chair of Automata Theory FUZZY LOGIC Felix Distel Dresden, WS 2012/13 About the Course Course Material Metamathematics of Fuzzy Logic by Petr Hjek available on course website: Slides Lecture Notes


  1. Faculty of Computer Science Chair of Automata Theory FUZZY LOGIC Felix Distel Dresden, WS 2012/13

  2. About the Course Course Material • Metamathematics of Fuzzy Logic by Petr Hájek • available on course website: – Slides – Lecture Notes (from a previous semester) – Exercise Sheets Contact Information • felix@tcs.inf.tu-dresden.de • lat.inf.tu-dresden.de/teaching/ws2012-2012/FL/ Exams Oral exams at the end of the semester or during semester break Fuzzy Logic TU Dresden, WS 2012/13 Slide 2

  3. Classical Logic • suited for properties that are – identifiable, – distinct, – clear-cut. • Examples: – days of the week, – marital status, – . . . Fuzzy Logic TU Dresden, WS 2012/13 Slide 3

  4. Imprecise Knowledge Is Italy a small country? Fuzzy Logic TU Dresden, WS 2012/13 Slide 4

  5. Imprecise Knowledge Is Italy a small country? Depends. Fuzzy Logic TU Dresden, WS 2012/13 Slide 4

  6. Imprecise Knowledge Is Italy a small country? Depends. Other examples for fuzzy proper- ties • old • warm • tall • . . . Fuzzy Logic TU Dresden, WS 2012/13 Slide 4

  7. Degrees of Membership large 1 0 . 8 truth degree 0 . 6 0 . 4 0 . 2 0 0 2 4 6 8 10 12 14 16 area in 10 6 km 2 Fuzzy Logic TU Dresden, WS 2012/13 Slide 5

  8. Degrees of Membership warm 1 0 . 8 truth degree 0 . 6 0 . 4 0 . 2 0 0 5 10 15 20 25 30 temperature in ◦ C Fuzzy Logic TU Dresden, WS 2012/13 Slide 6

  9. Crisp vs. Fuzzy Logics • Crisp Logics: Only truth values 1 and 0. = ⇒ characteristic function • Fuzzy Logics: Truth values from the interval [ 0 , 1 ] . = ⇒ membership function Fuzzy Logic TU Dresden, WS 2012/13 Slide 7

  10. Fuzzy vs. Probabilistic Logics Both use truth values • Fuzzy Logics: vagueness – statement is neither completely true nor false – e.g. “The Dresden TV Tower is a tall building. ” • Probabilistic Logics: belief or uncertainty – statement is either true nor false, but outcome unknown – e.g. “Tomorrow it will rain. ” Fuzzy Logic TU Dresden, WS 2012/13 Slide 8

  11. Question How to interpret conjunction? For the country of Turkey we might have: • membership in Huge : 0.046, • membership in Asian : 0.969 What is the membership degree of Turkey in Huge ⊓ Asian ? Fuzzy Logic TU Dresden, WS 2012/13 Slide 9

  12. Question How to interpret conjunction? For the country of Turkey we might have: • membership in Huge : 0.046, • membership in Asian : 0.969 What is the membership degree of Turkey in Huge ⊓ Asian ? Possible choices • Minimum of 0 . 046 and 0 . 969 • Product of 0 . 046 and 0 . 969 • . . . = ⇒ There is not just one fuzzy logic! Fuzzy Logic TU Dresden, WS 2012/13 Slide 9

  13. Generalize Operators Classical logical operators, such as • conjunction, • disjunction, • negation, and • implication need to be generalized. Generalizations should be • truth functional • “behave well” logically (e.g. conjunction should be associative, commutative, etc.) Fuzzy Logic TU Dresden, WS 2012/13 Slide 10

  14. t-Norms Definition Binary operator ⊗ : [ 0 , 1 ] × [ 0 , 1 ] → [ 0 , 1 ] • associative, • commutative, • monotone, and • has unit 1. Fuzzy Logic TU Dresden, WS 2012/13 Slide 11

  15. Continuous t-norms Fundamental continuous t-norms Gödel: x ⊗ y = min ( x, y ) 0.8 0.6 x ⊗ y 0.4 0.2 1 0.8 0 0.6 0 0.2 0.4 y 0.4 0.6 0.2 x 0.8 1 0 Fuzzy Logic TU Dresden, WS 2012/13 Slide 12

  16. Continuous t-norms Fundamental continuous t-norms Gödel: x ⊗ y = min ( x, y ) Product: x ⊗ y = x · y 0.8 0.6 x ⊗ y 0.4 0.2 1 0.8 0 0.6 0 0.2 0.4 y 0.4 0.6 0.2 x 0.8 1 0 Fuzzy Logic TU Dresden, WS 2012/13 Slide 12

  17. Continuous t-norms Fundamental continuous t-norms Gödel: x ⊗ y = min ( x, y ) Product: x ⊗ y = x · y Łukasiewicz: x ⊗ y = max ( 0 , x + y − 1 ) 0.8 0.6 x ⊗ y 0.4 0.2 1 0.8 0 0.6 0 0.2 0.4 y 0.4 0.6 0.2 x 0.8 1 0 Fuzzy Logic TU Dresden, WS 2012/13 Slide 12

  18. Truth Functions for Boolean Connectives Connective Truth Function Definition conjunction ( & ) t-norm ( ⊗ ) associative, commutative, monotone, unit 1, (usually also continuous) implication ( → ) ? negation ( ¬ ) ? disjunction ( ∨ ) ? Fuzzy Logic TU Dresden, WS 2012/13 Slide 13

  19. Generalizing Modus Ponens Modus Ponens in the Crisp Case φ ∧ ( φ → ψ ) then ψ . Fuzzy Generalization of Modus Ponens x ⊗ ( x ⇒ y ) ≤ y � �� � z Residuum Choose z maximal with this property: x ⇒ y = max { z | x ⊗ z ≤ y } Fuzzy Logic TU Dresden, WS 2012/13 Slide 14

  20. Uniqueness of Residuum Lemma 1.2 For every continous t-norm ⊗ x ⇒ y = max { z | x ⊗ z ≤ y } is the unique operator satisfying z ≤ x ⇒ y iff x ⊗ z ≤ y Fuzzy Logic TU Dresden, WS 2012/13 Slide 15

  21. Truth Functions for Boolean Connectives Connective Truth Function Definition conjunction ( & ) t-norm ( ⊗ ) associative, commutative, monotone, unit 1, (usually also continuous) implication ( → ) residuum ( ⇒ ) x ⊗ y ≤ z iff y ≤ x ⇒ z negation ( ¬ ) precomplement ⊖ x ⇒ 0 disjunction ( ∨ ) ? Fuzzy Logic TU Dresden, WS 2012/13 Slide 16

  22. Ordinal Sums Definition Given ( a i , b i ) , i ∈ I family disjoint open intervals, ⊗ i , i ∈ I family of t-norms � s − 1 � � s i ( x ) ⊗ i s i ( y ) if x, y ∈ ( a i , b i ) x ⊗ y = i min { x, y } otherwise where s i ( x ) = x − a i b i − a i is the ordinal sum � i ∈I ( ⊗ i , a i , b i ) . Fuzzy Logic TU Dresden, WS 2012/13 Slide 17

  23. Plots of Ordinal Sums x 0 0 . 3 0 . 7 1 Fuzzy Logic TU Dresden, WS 2012/13 Slide 18

  24. Plots of Ordinal Sums y 1 0 . 7 0 . 3 x 0 0 0 . 3 0 . 7 1 Fuzzy Logic TU Dresden, WS 2012/13 Slide 18

  25. Plots of Ordinal Sums y 1 0 . 7 0 . 3 x 0 0 0 . 3 0 . 7 1 Fuzzy Logic TU Dresden, WS 2012/13 Slide 18

  26. Plots of Ordinal Sums y 1 Gödel 0 . 7 Łukasiewicz 0 . 3 Product x 0 0 0 . 3 0 . 7 1 Fuzzy Logic TU Dresden, WS 2012/13 Slide 18

  27. Plots of Ordinal Sums y 1 Gödel Gödel 0 . 7 Łukasiewicz 0 . 3 Product Gödel x 0 0 0 . 3 0 . 7 1 Fuzzy Logic TU Dresden, WS 2012/13 Slide 18

  28. Plots of Ordinal Sums 0.8 0.6 x ⊗ y 0.4 0.2 1 0.8 0 0.6 0 0.2 0.4 y 0.4 0.6 0.2 x 0.8 1 0 Fuzzy Logic TU Dresden, WS 2012/13 Slide 18

  29. Isomorphisms between t-norms Isomorphic t-norms If there is s is a bijective, monotone function s : [ 0 , 1 ] → [ 0 , 1 ] satisfying x ⊗ 1 y = s − 1 � � s ( x ) ⊗ 2 s ( y ) then ⊗ 1 and ⊗ 2 are called isomorphic . Fuzzy Logic TU Dresden, WS 2012/13 Slide 19

  30. Isomorphic t-norms 0.8 0.6 x ⊗ y 0.4 0.2 1 0.8 0 0.6 0 0.2 0.4 y 0.4 0.6 0.2 x 0.8 1 0 Łukasiewicz t-norm (aka 1st Schweizer-Sklar t-norm) x ⊗ y = max { x + y − 1 , 0 } Fuzzy Logic TU Dresden, WS 2012/13 Slide 20

  31. Isomorphic t-norms 0.8 0.6 x ⊗ y 0.4 0.2 1 0.8 0 0.6 0 0.2 y 0.4 0.4 0.6 0.2 x 0.8 1 0 2nd Schweizer-Sklar t-norm � max { x 2 + y 2 − 1 , 0 } x ⊗ y = Fuzzy Logic TU Dresden, WS 2012/13 Slide 20

  32. Basic Logic Syntax P countable set of propositional variables, ⊗ continuous t-norm. Formulas of PC ( ⊗ ) are • 0 , • p , • f 1 & f 2 , and • f 1 → f 2 . Semantics Valuation V : P → [ 0 , 1 ] Zero V ( 0 ) = 0 , Strong Conjunction V ( φ & ψ ) = V ( φ ) ⊗ V ( ψ ) , Implication V ( φ → ψ ) = V ( φ ) ⇒ V ( ψ ) . Fuzzy Logic TU Dresden, WS 2012/13 Slide 21

  33. Abbreviations φ ∧ ψ := φ &( φ → ψ ) , Weak Conjunction � � � � Weak Disjunction φ ∨ ψ := ( φ → ψ ) → ψ ( ψ → φ ) → φ ∧ Negation ¬ φ := φ → 0 Equivalence φ ≡ ψ := ( φ → ψ ) &( ψ → φ ) 1 := 0 → 0 . One Fuzzy Logic TU Dresden, WS 2012/13 Slide 22

  34. 1-Tautologies Formula φ such that V ( φ ) = 1 for every valuation V . Fuzzy Logic TU Dresden, WS 2012/13 Slide 23

  35. Different t-Norms, Different 1-Tautologies ¬¬ φ → φ Fuzzy Logic TU Dresden, WS 2012/13 Slide 24

  36. Different t-Norms, Different 1-Tautologies ¬¬ φ → φ • Łukasiewicz: V ( ¬¬ φ → φ ) = ⊖ ⊖ V ( φ ) ⇒ V ( φ ) � � = 1 − 1 − V ( φ ) ⇒ V ( φ ) = V ( φ ) ⇒ V ( φ ) = 1 1-tautology for Łukasiewicz Fuzzy Logic TU Dresden, WS 2012/13 Slide 24

  37. Different t-Norms, Different 1-Tautologies ¬¬ φ → φ • Łukasiewicz: V ( ¬¬ φ → φ ) = ⊖ ⊖ V ( φ ) ⇒ V ( φ ) � � = 1 − 1 − V ( φ ) ⇒ V ( φ ) = V ( φ ) ⇒ V ( φ ) = 1 1-tautology for Łukasiewicz • Gödel or Product: Not a 1-tautology! Assume V ( φ ) = 0 . 5, then V ( ¬¬ φ → φ ) = ⊖ ⊖ V ( φ ) ⇒ V ( φ ) = ⊖ 0 ⇒ V ( φ ) = 1 ⇒ 0 . 5 = 0 . 5 Fuzzy Logic TU Dresden, WS 2012/13 Slide 24

  38. 1-Tautologies for all t-Norms 1-tautologies 1-tautologies for ⊗ Ł for ⊗ min 1-tautologies for ⊗ Π Fuzzy Logic TU Dresden, WS 2012/13 Slide 25

  39. 1-Tautologies for all t-Norms 1-tautologies 1-tautologies for ⊗ Ł for ⊗ min 1-tautologies for ⊗ Π We are interested in 1-tautologies for all t-norms. Fuzzy Logic TU Dresden, WS 2012/13 Slide 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend