functional quantum programming
play

Functional Quantum Programming Thorsten Altenkirch University of - PowerPoint PPT Presentation

Functional Quantum Programming Thorsten Altenkirch University of Nottingham based on joint work with Jonathan Grattage supported by EPSRC grant GR/S30818/01 Tallinn Feb 06 p.1/44 Background Tallinn Feb 06 p.2/44 Background


  1. s q ⑥ ❧ � � ❧ ♥ ❥ � ⑤ ✪ r r ✐ r ✩ ✝ q � Extensional equality A classical computation induces a function U by ✇②①④③ t✈✉ U We say that two computations are extensionally equivalent , if they give rise to the same function. Tallinn Feb 06 – p.12/44

  2. ✩ ♣q ✪ ✝ ✩ ✪ ♣ ✩ q ✪ Extensional equality . . . Theorem: U U U Tallinn Feb 06 – p.13/44

  3. ✪ ♣ ✪ ✩ ♣q ✪ ✝ ✩ q ✩ Extensional equality . . . Theorem: U U U Hence, classical computations upto extensional equality give rise to the category . Tallinn Feb 06 – p.13/44

  4. ❥ ✩ ♣q ✪ ✝ ✩ ✪ ♣ ✩ q ✪ r Extensional equality . . . Theorem: U U U Hence, classical computations upto extensional equality give rise to the category . Theorem: Any function on finite sets can be realized by a computation. Tallinn Feb 06 – p.13/44

  5. q ✪ r ✩ ♣q ✪ ✝ ✩ ❥ ✪ ♣ ✩ Extensional equality . . . Theorem: U U U Hence, classical computations upto extensional equality give rise to the category . Theorem: Any function on finite sets can be realized by a computation. Translation for Category Theoreticians: U is full and faithful. Tallinn Feb 06 – p.13/44

  6. ✪ r ✒ ✝ ✪ ❥ ✩ ✟ r ✟ ✞ ✟ ❶ ✩ ✒ Example : function ⑦⑨⑧ ⑦⑩⑧ Tallinn Feb 06 – p.14/44

  7. ✒ ✟ ✝ ✪ ❶ r ✞ ✩ ✟ ✪ ✟ ✟ r ✟ ✩ ❥ ✟ � ❹ ✒ Example : function ⑦⑨⑧ ⑦⑩⑧ computation ❡❸❷ Tallinn Feb 06 – p.14/44

  8. ✪ r ✪ ❺ ❥ ✟ ✩ ✟ r ✟ ✒ ❺ ✒ ✝ ✩ ✒ Example : function Tallinn Feb 06 – p.15/44

  9. Tallinn Feb 06 – p.15/44 ✪ ✪ ✒ r ❽ ✩ ❾ ✟ ✩ r ✟ ✩ ✪ ✟ r ✟ ✝ ❽ ❥ ✝ ✪ ✒ ❿ r ✞ ✩ ✪ r ✒ r ✞ ✩ ❾ ✪ ✒ ✩ ❾ ❥ ❾ ✟ ✩ ✟ r ✟ ✪ ❺ ✒ ✝ ✩ ✒ r ✒ ✪ ❻ ❺ ✍ ✟ ✍ ❻ � ✟ ✍ ❽ ✟ ✍ ❻ ❼ ✟ ���� ���� : Example computation function

  10. 2. Finite quantum computation 1. Finite classical computation 2. Finite quantum computation 3. QML basics 4. Compiling QML 5. Conclusions and further work Tallinn Feb 06 – p.16/44

  11. Linear algebra revision Tallinn Feb 06 – p.17/44

  12. ➀ ✝ Linear algebra revision Given a finite set (the base) is a Hilbert space . Tallinn Feb 06 – p.17/44

  13. ➁ ❥ ✑ ➀ ✝ ❥ ➂ ❥ ➀ Linear algebra revision Given a finite set (the base) is a Hilbert space . Linear operators: induces . we write Tallinn Feb 06 – p.17/44

  14. ✪ ✑ ➄➇ ✩ ➈ ✪ ➄➇ ✩ ➀ ➆ ➅ ✝ ➃ ➉ ❥ ❥ ➂ ➀ ❥ ➁ ❥ ✝ ➀ Linear algebra revision Given a finite set (the base) is a Hilbert space . Linear operators: induces . we write Norm of a vector: ➃✢➄ , Tallinn Feb 06 – p.17/44

  15. ➅ ✪ ➀ ➆ ✪ ✝ ➃ ➈ ✩ ✑ ❥ ➄➇ ➂ ➄➇ ➀ ❥ ➁ ❥ ❥ ➉ ❥ ✝ ➀ ✑ ✩ Linear algebra revision Given a finite set (the base) is a Hilbert space . Linear operators: induces . we write Norm of a vector: ➃✢➄ , Unitary operators: A unitary operator is a linear iso- unitary morphism that preserves the norm. Tallinn Feb 06 – p.17/44

  16. Basics of quantum computation Tallinn Feb 06 – p.18/44

  17. ➄ ❥ ➀ ➃ ✝ ✞ Basics of quantum computation A pure state over is a vector with unit norm ➃✢➄ . Tallinn Feb 06 – p.18/44

  18. ✝ ➃ ✑ ➄ ❥ ➀ ❥ ✞ Basics of quantum computation A pure state over is a vector with unit norm ➃✢➄ . A reversible computation is given by a unitary operator . unitary Tallinn Feb 06 – p.18/44

  19. Quantum computations ( ) Tallinn Feb 06 – p.19/44

  20. ❞ ❝ ❡ ❢ � ❣ ❤ � Quantum computations ( ) Given finite sets (input) and (output): Tallinn Feb 06 – p.19/44

  21. ❢ � � ❤ ❣ ❝ ❞ ❡ Quantum computations ( ) Given finite sets (input) and (output): a finite set , the base of the space of initial heaps, Tallinn Feb 06 – p.19/44

  22. ❤ � ➊ ❥ ✐ ❝ ❞ ❡ ❢ � ❣ Quantum computations ( ) Given finite sets (input) and (output): a finite set , the base of the space of initial heaps, a heap initialisation vector , Tallinn Feb 06 – p.19/44

  23. � ❤ ➊ ❥ ✐ ❝ ❞ ❡ ❢ � ❣ Quantum computations ( ) Given finite sets (input) and (output): a finite set , the base of the space of initial heaps, a heap initialisation vector , a finite set , the base of the space of garbage states, Tallinn Feb 06 – p.19/44

  24. ➊ � ❥ ✐ ✑ � ❤ ❥ ❣ ❢ ❡ ❞ ❝ Quantum computations ( ) Given finite sets (input) and (output): a finite set , the base of the space of initial heaps, a heap initialisation vector , a finite set , the base of the space of garbage states, a unitary operator . unitary Tallinn Feb 06 – p.19/44

  25. Composing quantum computations Tallinn Feb 06 – p.20/44

  26. ♦ ♥ ❞ ♦ ♥ � ♥ ✕ ♦ � ♦ � ♥ � Composing quantum computations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Tallinn Feb 06 – p.20/44

  27. Semantics of quantum computations. . Tallinn Feb 06 – p.21/44

  28. Semantics of quantum computations. . . . . is a bit more subtle. Tallinn Feb 06 – p.21/44

  29. ⑦ ⑧ ❥ ❧ Semantics of quantum computations. . . . . is a bit more subtle. There is no (sensible) operator on vector spaces, replacing . Tallinn Feb 06 – p.21/44

  30. ⑦ ⑧ ❥ ❧ Semantics of quantum computations. . . . . is a bit more subtle. There is no (sensible) operator on vector spaces, replacing . Indeed: Forgetting part of a pure state results in a mixed state . Tallinn Feb 06 – p.21/44

  31. Density matrizes Tallinn Feb 06 – p.22/44

  32. ➋ ❥ ✑ Density matrizes Mixed states can be represented by density matrizes . Tallinn Feb 06 – p.22/44

  33. ➄ ➌ ➍ ➋ ❥ ✑ ➄ ➌ ➋ ➌ ➄ ✝ ➍ Density matrizes Mixed states can be represented by density matrizes . Eigenvalues represent probabilities System is in state with prob. Tallinn Feb 06 – p.22/44

  34. ➍ ➄ ✞ ➋ ❥ ✑ ➍ ➄ ➋ ➌ ➄ ✝ ➌ ➌ Density matrizes Mixed states can be represented by density matrizes . Eigenvalues represent probabilities System is in state with prob. Eigenvalues have to be positive and their sum (the trace) is . Tallinn Feb 06 – p.22/44

  35. Example: forgetting a qbit Tallinn Feb 06 – p.23/44

  36. ❁ ➏ ➏ ➐ ➐ ❁ ➏ ➐ ➐ ➐ ➐ ➐ ➐ ➐ ➐ ➑ ➐ ➑ ➐ ❁ ➏ ➎ ➎ ➎ ➑ ✏ ✏ ✑ ✏ ✏ ❥ ➋ ❁ Example: forgetting a qbit EPR is represented by : Tallinn Feb 06 – p.23/44

  37. Tallinn Feb 06 – p.23/44 ➓ ✩ ⑧ ➒ ✏ ★ ❽ ❽ ➓ ⑧ ➒ ✏ ★ ✞ ✞ ✪ ➑ ⑧ ➓ ✞ ✞ ★ ✏ ➒ ➓ ✝ ❽ ❽ ★ ✏ ➒ ⑧ ➋ ➑ ➏ ❁ ✏ ✑ ✏ ✏ ➋ ➎ ➎ ➎ ➏ ❁ ➐ ➐ ➑ ➐ ❥ ➐ ➐ ➐ ➐ ➐ ➐ ➐ ➏ ❁ ➐ ➐ ➏ ❁ ✏ Example: forgetting a qbit : EPR is represented by

  38. ➋ ➔ ❥ ✏ ✑ ✏ ➏ ❁ ➐ ➐ ➏ ❁ Example: forgetting a qbit . . . After measuring one qbit we obtain : Tallinn Feb 06 – p.24/44

  39. ➓ ❽ ✞ ✝ ➓ ✞ ★ ➔ ➋ ➓ ❽ ★ ✟ ✞ ✝ ✞ ★ ★ ➓ ➋ ➔ ❥ ✏ ✑ ✏ ➏ ➔ ❁ ➐ ➐ ➏ ❁ ➋ ✟ Example: forgetting a qbit . . . After measuring one qbit we obtain : Tallinn Feb 06 – p.24/44

  40. Superoperators Tallinn Feb 06 – p.25/44

  41. Superoperators Morphisms on density matrizes are called superoperators , these are linear maps, which are completely positive, and trace preserving Tallinn Feb 06 – p.25/44

  42. → Superoperators Morphisms on density matrizes are called superoperators , these are linear maps, which are completely positive, and trace preserving Every unitary operator gives rise to a superoperator . Tallinn Feb 06 – p.25/44

  43. ✫ ✬ ➂ ③ ➣ ❥ ✑ Superoperators. . . There is an operator super called partial trace . Tallinn Feb 06 – p.26/44

  44. ↔ ❧ ❥ ➙ ✑ ③ ➙ ✏ ✞➛ ➜ ✏ ✑ ❥ ➣ ③ ➂ ✬ ✫ ✏ Superoperators. . . There is an operator super called partial trace . E.g. is ✫✭✬↕↔ super represented by a matrix. Tallinn Feb 06 – p.26/44

  45. Semantics Tallinn Feb 06 – p.27/44

  46. � � � ⑤ ➢ ➡ ① � ➠ s ♥ ➝ ✑ ❥ q q Semantics Every quantum computation gives rise to a superoperator U super ➞⑩➟ U Tallinn Feb 06 – p.27/44

  47. ① s ➡ � � ➠ ♥ � ➝ ⑤ � ✑ ❥ q ❥ ✑ q ➢ Semantics Every quantum computation gives rise to a superoperator U super ➞⑩➟ U Theorem: Every superoperator super (on finite Hilbert spaces) comes from a quantum computation. Tallinn Feb 06 – p.27/44

  48. Classical vs quantum Tallinn Feb 06 – p.28/44

  49. ☎ ✆ ✆ ☎ ✆ Classical vs quantum classical ( ) quantum ( ) Tallinn Feb 06 – p.28/44

  50. ☎ ✆ ✆ ☎ ✆ Classical vs quantum classical ( ) quantum ( ) finite sets Tallinn Feb 06 – p.28/44

  51. ☎ ✆ ✆ ☎ ✆ Classical vs quantum classical ( ) quantum ( ) finite sets finite dimensional Hilbert spaces Tallinn Feb 06 – p.28/44

  52. ☎ ✆ ✆ ☎ ✆ ➤ Classical vs quantum classical ( ) quantum ( ) finite sets finite dimensional Hilbert spaces cartesian product ( ) Tallinn Feb 06 – p.28/44

  53. ➤ ☎ ✆ ✆ ☎ ✆ ➥ Classical vs quantum classical ( ) quantum ( ) finite sets finite dimensional Hilbert spaces cartesian product ( ) tensor product ( ) Tallinn Feb 06 – p.28/44

  54. ➤ ☎ ✆ ✆ ☎ ✆ ➥ Classical vs quantum classical ( ) quantum ( ) finite sets finite dimensional Hilbert spaces cartesian product ( ) tensor product ( ) bijections Tallinn Feb 06 – p.28/44

  55. ➤ ☎ ✆ ✆ ☎ ✆ ➥ Classical vs quantum classical ( ) quantum ( ) finite sets finite dimensional Hilbert spaces cartesian product ( ) tensor product ( ) bijections unitary operators Tallinn Feb 06 – p.28/44

  56. ➤ ☎ ✆ ✆ ☎ ✆ ➥ Classical vs quantum classical ( ) quantum ( ) finite sets finite dimensional Hilbert spaces cartesian product ( ) tensor product ( ) bijections unitary operators functions Tallinn Feb 06 – p.28/44

  57. ➤ ☎ ✆ ✆ ☎ ✆ ➥ Classical vs quantum classical ( ) quantum ( ) finite sets finite dimensional Hilbert spaces cartesian product ( ) tensor product ( ) bijections unitary operators functions superoperators Tallinn Feb 06 – p.28/44

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend