functional limit theorems for semi dispersing billiards
play

Functional limit theorems for semi-dispersing billiards with cusps - PowerPoint PPT Presentation

Functional limit theorems for semi-dispersing billiards with cusps Fran coise P` ene Univ Brest, IUF, LMBA, UMR CNRS 6205, France joint work with Paul Jung (KAIST, Daejon, south Corea) and Hong-Kun Zhang (UMASS, Amherst, USA) CIRM


  1. Functional limit theorems for semi-dispersing billiards with cusps Fran¸ coise P` ene Univ Brest, IUF, LMBA, UMR CNRS 6205, France joint work with Paul Jung (KAIST, Daejon, south Corea) and Hong-Kun Zhang (UMASS, Amherst, USA) CIRM Thermodynamic Formalism: Ergodic Theory and Validated Numerics 12th July 2019 1/11 Fran¸ coise P` ene FCLT for Billiards with cusp

  2. Functional limit theorems for i.i.d. random variables Let ( X k ) k be a sequence of centered R -valued i.i.d. random variables. ◮ If E [ X 2 1 ] < ∞ , then   ⌊ nt ⌋  n − 1 L , J 1 � ∀ t 0 > 0 , X k n → + ∞ ( B t ) t ∈ [0 , t 0 ] , − → 2  k =1 t ∈ [0 , t 0 ] with ( B t ) t a Brownian motion. 2/11 Fran¸ coise P` ene FCLT for Billiards with cusp

  3. Functional limit theorems for i.i.d. random variables Let ( X k ) k be a sequence of centered R -valued i.i.d. random variables. ◮ If E [ X 2 1 ] < ∞ , then   ⌊ nt ⌋  n − 1 L , J 1 � ∀ t 0 > 0 , X k n → + ∞ ( B t ) t ∈ [0 , t 0 ] , − → 2  k =1 t ∈ [0 , t 0 ] with ( B t ) t a Brownian motion. ◮ If lim x →∞ x 2 P ( ± X 1 ≥ x ) = A ± , A + + A − > 0, then   ⌊ nt ⌋ 1 L , J 1 � ∀ t 0 > 0 , √ n log n X k n → + ∞ ( B t ) t ∈ [0 , t 0 ] . − →   k =1 t ∈ [0 , t 0 ] 2/11 Fran¸ coise P` ene FCLT for Billiards with cusp

  4. Functional limit theorems for i.i.d. random variables Let ( X k ) k be a sequence of centered R -valued i.i.d. random variables. ◮ If E [ X 2 1 ] < ∞ , then   ⌊ nt ⌋  n − 1 L , J 1 � ∀ t 0 > 0 , X k n → + ∞ ( B t ) t ∈ [0 , t 0 ] , − → 2  k =1 t ∈ [0 , t 0 ] with ( B t ) t a Brownian motion. ◮ If lim x →∞ x 2 P ( ± X 1 ≥ x ) = A ± , A + + A − > 0, then   ⌊ nt ⌋ 1 L , J 1 � ∀ t 0 > 0 , √ n log n X k n → + ∞ ( B t ) t ∈ [0 , t 0 ] . − →   k =1 t ∈ [0 , t 0 ] ◮ If ∃ α ∈ (1 , 2) s.t. lim x →∞ x α P ( ± X 1 ≥ x ) = A ± , A + + A − > 0, then   ⌊ nt ⌋  n − 1 L , J 1 � ∀ t 0 > 0 , X k n → + ∞ ( Z t ) t ∈ [0 , t 0 ] , − → α  k =1 t ∈ [0 , t 0 ] with ( Z t ) t an α -stable process (non continuous, but c` adl` ag: right continuous with left limit). 2/11 Fran¸ coise P` ene FCLT for Billiards with cusp

  5. Billiard in a dispersing domain with cusps Q ⊂ R 2 , ∂ Q = ∪ i Γ i P i = Γ i ∩ Γ i +1 : ”corners” (distinct tangents) or ”cusps” (same tangent) Γ i curve C 3 ”convex” with non null curvature outside the cusps. Space M : set of unit reflected vectors v ) ∈ ∂ Q × S 1 : � � M := { x = ( q , � n q , � v � ≥ 0 } � n q : inward unit vector normal to ∂ Q at q Billiard map : T : M → M : T ( x )= next reflected vector 1 Invariant probability measure : µ with density ( q , � v ) �→ 2 | ∂ Q | sin( T q Q , � v ) 3/11 Fran¸ coise P` ene FCLT for Billiards with cusp

  6. Billiard in a dispersive domain with/without cusp Let H η be the set of functions f : M → R η -H¨ older inside each Γ i . � Let f ∈ H η s.t. M f d µ = 0. ◮ If there is no cusp : ∀ t 0 > 0, �� ⌊ nt ⌋− 1 � f ◦ T k L , J 1 k =0 √ n n → + ∞ (Σ( f ) B t ) t ∈ [0 , t 0 ] , − → t ∈ [0 , t 0 ] B = ( B t ) t BM (brownian motion), Σ 2 ( f ) := � n ∈ Z Cov ( f , f ◦ T n ). [Sinai,70], [Young,98], [Chernov,99], [De Simoi & T´ oth,14] 4/11 Fran¸ coise P` ene FCLT for Billiards with cusp

  7. Billiard in a dispersive domain with/without cusp Let H η be the set of functions f : M → R η -H¨ older inside each Γ i . � Let f ∈ H η s.t. M f d µ = 0. ◮ If there is no cusp : ∀ t 0 > 0, �� ⌊ nt ⌋− 1 � f ◦ T k L , J 1 k =0 √ n n → + ∞ (Σ( f ) B t ) t ∈ [0 , t 0 ] , − → t ∈ [0 , t 0 ] B = ( B t ) t BM (brownian motion), Σ 2 ( f ) := � n ∈ Z Cov ( f , f ◦ T n ). [Sinai,70], [Young,98], [Chernov,99], [De Simoi & T´ oth,14] ◮ Machta model : 3 pairwise tangent circles. [Machta,83], [Chernov & Markarian,07], [Chernov&Zhang,08]: mixing rate [B´ alint, Chernov & Dolgopyat,11] (1 cusp P ) : � � ⌊ nt ⌋− 1 � f ◦ T k L , J 1 k =0 n → + ∞ ( σ f B t ) t BM − → √ n log n t 1 2 d � � σ f := c . S 1 f ( P , � v ) | sin( T P Q , � v ) | v ; f ( P , � v ) := lim x → ( P ,� v ) , x ∈M f ( x ). 4/11 Fran¸ coise P` ene FCLT for Billiards with cusp

  8. Billards with higher order cusps � f ∈ H η s.t. M f d µ = 0, with constant sign around each optimal cusp. ◮ [Jung & Zhang,18] (1 cusp P : z ± ( s ) = ± c 0 s β , β > 2, α := β β − 1 ) : α � n − 1 n → + ∞ σ f Z : E[e iuZ ] = e −| u | α − i sign( u ) tan πα L n − 1 k =0 f ◦ T k − → 2 1 α d � � σ f , P := c . S 1 f ( P , � v ) | sin( T P Q , � v ) | v 5/11 Fran¸ coise P` ene FCLT for Billiards with cusp

  9. Billards with higher order cusps � f ∈ H η s.t. M f d µ = 0, with constant sign around each optimal cusp. ◮ [Jung & Zhang,18] (1 cusp P : z ± ( s ) = ± c 0 s β , β > 2, α := β β − 1 ) : α � n − 1 n → + ∞ σ f Z : E[e iuZ ] = e −| u | α − i sign( u ) tan πα L n − 1 k =0 f ◦ T k − → 2 1 α d � � σ f , P := c . S 1 f ( P , � v ) | sin( T P Q , � v ) | v ◮ [Jung, P. & Zhang,19+] If ◮ β i -Cusp in P i : z i , ± ( s ) = ± c i , ± s β i /β i + O � s 2 β i − 1 � , i , ± ( s ) = ± c i , ± s β i + O z ′ s 2 β i − 2 � � , with c i , ± ≥ 0 not both 0, ◮ T ( P i ) � = P j , ◮ β ∗ := max β i > 2, α := β ∗ β ∗ − 1 . 5/11 Fran¸ coise P` ene FCLT for Billiards with cusp

  10. Billards with higher order cusps � f ∈ H η s.t. M f d µ = 0, with constant sign around each optimal cusp. β ◮ [Jung & Zhang,18] (1 cusp P : z ± ( s ) = ± c 0 s β , β > 2, α := β − 1 ) : L n − 1 α � n − 1 n → + ∞ σ f Z : E[e iuZ ] = e −| u | α − i sign( u ) tan πα k =0 f ◦ T k − → 2 1 α d � � σ f , P := c . S 1 f ( P , � v ) | sin( T P Q , � v ) | v ◮ [Jung, P. & Zhang,19+] If ◮ β i -Cusp in P i : z i , ± ( s ) = ± c i , ± s β i /β i + O s 2 β i − 1 � � , i , ± ( s ) = ± c i , ± s β i + O z ′ s 2 β i − 2 � � , with c i , ± ≥ 0 not both 0, ◮ T ( P i ) � = P j , ◮ β ∗ := max β i > 2, α := β ∗ β ∗ − 1 . � f ◦ T k � L , M 1 � � α � ⌊ nt ⌋− 1 i : β i = β ∗ σ f , P i Z ( i ) n − 1 Then − → Z t = � k =0 t n → + ∞ t t Z ( i ) independent α -stable processes with independent and stationary increments s.t. : Z ( i ) L 1 α Z , so that: = t t � �� �� sign( σ f , i ) | σ f , i | α tan πα | σ f , P i | α − i sign( u ) � E [ e iu Z t ] = exp − t | u | α 2 i i 5/11 Fran¸ coise P` ene FCLT for Billiards with cusp

  11. Convergence for M 1 but not for J 1 ◮ d J 1 ( f , g ) (resp. d M 1 ( f , g ) ) : infimum of ℓ s.t. two ”ants” can travel one the graph of f and the other the one of g , staying ℓ -close one from the other, without turning back, jumping (resp. walking vertically) when they meet a discontinuity. d =1/n d =1/2 d =1/2 d =1/2 J1 J1 J1 J 1 d =1/n d =1/n d =1/n d =1/4 M M M1 M1 1 1 1 1-(1/n) 1/2 1/n 0 0 1/2 1 6/11 Fran¸ coise P` ene FCLT for Billiards with cusp

  12. Convergence for M 1 but not for J 1 ◮ d J 1 ( f , g ) (resp. d M 1 ( f , g ) ) : infimum of ℓ s.t. two ”ants” can travel one the graph of f and the other the one of g , staying ℓ -close one from the other, without turning back, jumping (resp. walking vertically) when they meet a discontinuity. d =1/n d =1/2 d =1/2 d =1/2 J1 J1 J1 J 1 d =1/n d =1/n d =1/n d =1/4 M M M1 M1 1 1 1 1-(1/n) 1/2 1/n 0 0 1/2 1 k =0 f ◦ T k and � f � ∞ < ∞ : ◮ Since S n f = � n − 1 � � S ⌊ nt ⌋ f + ( nt − ⌊ nt ⌋ ) f ◦ T ⌈ nt ⌉ � S ⌊ nt ⌋ f � L , J 1 L , J 1 n → + ∞ ( Z t ) t ⇒ − → n → + ∞ ( Z t ) t − → 1 1 n n α α t t which would imply that a sequence of continuous process converges for J 1 to a discontinuous process. Impossible! 6/11 Fran¸ coise P` ene FCLT for Billiards with cusp

  13. Proof of the functional limit theorem � Let f ∈ H η s.t. M f d µ = 0. ◮ Induced system ( M , ˜ µ, F ) M := { x = ( q , v ) ∈ M : d ( q , cusps ) ≥ ǫ } , µ := µ ( ·| M ), F ( x ) = T R ( x ) ( x ), R ( x ) := min { n ≥ 1 : T n ( x ) ∈ M } ˜ f ◦ T k and Set ˜ f := � R ( · ) − 1 k =0 N n ( x ) = # { k = 1 , ..., n − 1 : T k ( x ) ∈ M } ≈ n µ ( M ). 7/11 Fran¸ coise P` ene FCLT for Billiards with cusp

  14. Proof of the functional limit theorem � Let f ∈ H η s.t. M f d µ = 0. ◮ Induced system ( M , ˜ µ, F ) M := { x = ( q , v ) ∈ M : d ( q , cusps ) ≥ ǫ } , µ := µ ( ·| M ), F ( x ) = T R ( x ) ( x ), R ( x ) := min { n ≥ 1 : T n ( x ) ∈ M } ˜ f ◦ T k and Set ˜ f := � R ( · ) − 1 k =0 N n ( x ) = # { k = 1 , ..., n − 1 : T k ( x ) ∈ M } ≈ n µ ( M ). N ⌊ nt ⌋ ( x ) − 1 ⌊ nt ⌋− 1 ⌊ n µ ( M ) t ⌋− 1 1 µ ( M ) α n − 1 � f ◦ T k ( x ) ≈ n − 1 � ˜ � ˜ f ◦ F k ( x ) ≈ f ◦ F k ( x ) α α 1 ( n µ ( M )) α k =0 k =1 k =1 7/11 Fran¸ coise P` ene FCLT for Billiards with cusp

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend