from experiments to models
play

From experiments to models R.C. Lambert Neuronal networks and - PowerPoint PPT Presentation

From experiments to models R.C. Lambert Neuronal networks and physiopathological rhythms Universit Pierre et Marie Curie- Neuroscience Paris Seine (NPS) CNRS UMR8246, INSERM U1130, UPMC UM119 How do I model a cortical neuron ? cortical


  1. From experiments to models R.C. Lambert Neuronal networks and physiopathological rhythms Université Pierre et Marie Curie- Neuroscience Paris Seine (NPS) CNRS UMR8246, INSERM U1130, UPMC UM119

  2. How do I model a cortical neuron ? cortical pyramidal neuron current clamp mode Ie Vm Vm Ie

  3. How do I model a cortical neuron ? cortical pyramidal neuron current clamp mode Ie Vm decreasing frequency (adaptation) spikes amplitude of the depolarization slow depolarization resting Vm (-70mV)

  4. Resting membrane potential V = EeqK + - + K+ - K+ K+ + K+ - + - + - + - + A- A- A- A- - + - + o o i i dynamic equilibrium Assume channel only conducts one species of ion (e.g. K + ) • Consider energy change in transferring one mole of ions across the membrane: • electrical potential change = zFEeq chemical potential change = RT ln([ion] i / [ion] o ) Nernst equation : Eeq = - (RT / zF) ln([ion] i / [ion] o )

  5. Resting membrane potential In an electrolyte solution, the concentrations of all the ions are such that the solution is electrically neutral. V = EeqK + - + - K+ + K+ - + - + - + - + A- A- - + - + o i

  6. Resting membrane potential In an electrolyte solution, the concentrations of all the ions are such that the solution is electrically neutral. V = EeqK + - + - K+ + K+ - + - + - + - + A- A- - + - + o i 10 Å + - 10 Å

  7. Resting membrane potential Cm V = EeqK + - + - K+ + K+ - + o i - + - + - + A- A- - + « A capacitor consists of two conductors separated by a - + non-conductive region » (Wikipedia :-)) o i • The capacitor behaves as a charge storage device • The charge accumulation (Q) in the capacitor plates is not instantaneous. Potential across the capacitor exponentially rises Q = C . E eq − > I c = dQ dt = C . dV 10 Å dt + The value of the capacitance C (in F) is proportional to the - nature of the dielectric (cste), its thickness (cste) and the area of the « plates » (size of the cell). 10 Å Cm = cmA with cm (specific capacitance) = 10nF/mm2 and A in mm2 (0.01 to 0.1 mm2)

  8. Resting membrane potential Cm V = EeqK + - + - K+ + K+ - + o i - + - + - + A- A- - GK + + - + o i EeqK + • The K+ conductance is not voltage dependent • The K+ current = 0 when V=EeqK+ I K = G K . ( V − Eeq K )

  9. Resting membrane potential • other intracellular anions (non-permeant except bicarbonate) : proteins, metabolites, phosphates, bicarbonate • gradients maintained by pumps (Na/K-ATPase: electrogenic 3Na/2K) Na + ; Ca 2+ K + • Veq near -70mV ➢ mostly K+ conductance (anion fluxes = 0) 2+ A T P Ca + Na Cl - ATP + K

  10. Resting membrane potential Cm V inv = G Na . Eeq Na + G K . Eeq K G Na + G K o i GNa + - + EeqNa + - K+ + K+ - + Na+ Na+ - + - + A- A- - GK + + EeqK + - + o i equilibrium Cm o i G G leak = 1 E leak = V inv R m

  11. How do I model a cortical neuron ? cortical pyramidal neuron current clamp mode Ie Vm decreasing frequency (adaptation) spikes Cm amplitude of the depolarization o i slow depolarization resting Vm (-70mV) G Eleak Gleak

  12. Passive response to input Cm dVm = dQ dt = I c dt Vm Cm Ic 0 = Ic + I leak = Cm dVm + G leak ( Vm − E leak ) i o dt I leak At rest, Vm = cst Vm=Eleak G Eleak Gleak I leak = G leak ( Vm − E leak ) rem : by convention, Iion >0 means output of cations. membrane current is defined as postive-outward

  13. Passive response to input Cm dVm = dQ dt = I c dt Vm Cm Ic Ie i o I leak (Kirch-hoff’s law : sum of all the currents entering a point in a circuit must be 0) − Ie + Ic + I leak = 0 G Eleak Gleak − Ie + Ic + I leak = − Ie + Cm dVm + G leak ( Vm − E leak ) = 0 dt I leak = G leak ( Vm − E leak ) Cm dVm = Ie − G leak ( Vm − E leak ) dt rem : by convention, current that enters the neuron through an electrode is defined as positive-inward

  14. Passive response to input Cm dVm = Ie − G leak ( Vm − E leak ) dt Rm . Cm . dVm = Rm . Ie − ( Vm − E leak ) dt Rm . Cm . dVm = ( Vm ∞ − E leak ) − ( Vm − E leak ) dt Rm . Cm . dVm = Vm ∞ − Vm dt − t Δ Vm Vm = Vm ∞ . [1 − exp ( Rm . Cm )] Vm = Vm ∞ . [1 − exp ( − t )] ; with τ m = Rm . Cm (time cste) τ m Rm and Cm define how the membrane potential of the cell changes in response to ion fluxes (synaptic activity, electrode, voltage dependent conductances …) both in term of amplitude ( ∆ Vm= Rm.Ie) and kinetics ( 𝛖 m= Rm.Cm)

  15. How do I model a cortical neuron ? cortical pyramidal neuron current clamp mode Ie Vm decreasing frequency (adaptation) spikes Cm amplitude of the depolarization o i slow depolarization resting Vm (-70mV) G Eleak Gleak

  16. How do I model a cortical neuron ? The simplest neuron model : Leaky Integrate and Fire Cm dVm = Ie − G leak ( Vm − E leak ) dt • only passive properties when Vm reaches a threshold value V th (-50, -55mV) the neuron fires an AP and Vm is reset to V reset (E leak ) • if Ie=0, Vm relaxes exponentially to E leak with time constant 𝝊 •

  17. How do I model a cortical neuron ? cortical pyramidal neuron current clamp mode Ie Vm decreasing frequency (adaptation) spikes amplitude of the depolarization slow depolarization resting Vm (-70mV)

  18. How do I model a cortical neuron ? More complex Integrate and Fire Cm dVm = Ie − G leak ( Vm − E leak ) − G adapt ( Vm − E adapt ) dt when Vm reaches a threshold value V th (-50, -55mV) : • • the neuron fires an AP Vm is reset to V reset (E leak ) • G adapt is increased by an amount Δ G adapt -> during repetitive firing I adapt progressively • increases, slowing spike generation decreasing frequency (adaptation) with G adapt cortical neuron see for example : Gerstner, W. (2008). Spike-response model. Scholarpedia , 3 (12), 1343. http://doi.org/10.4249/scholarpedia.1343

  19. How do I model a cortical neuron ? Adding voltage-dependent conductances G Na + E eq Na + o i G K + E eq K + Hodgkin & Huxley 1939 Hodgkin & Huxley 1952 E leak G leak Cm . dVm = Ie − G leak . ( Vm − E leak ) − I Na ( t , Vm ) − I K ( t , Vm ) dt Cm . dVm = Ie − G leak . ( Vm − E leak ) − G Na ( t , Vm ) . ( Vm − E Na ) − G K ( t , Vm ) . ( Vm − E K ) dt

  20. the theory Bezanilla 2000 Armstrong 2003 I K = G K ( t , Vm ) . ( Vm − E K ) • probability of one « gate » to be open : n • probability of the 4 « gates » to be open : n 4 • maximal K+ conductance : G K • K+ conductance of the cell : G K n 4 I K = G K . n 4 ( t , Vm ) . ( Vm − E K )

  21. the theory α ( Vm ) • probability of one « gate » to be open : n 1 - n( t,Vm ) n( t,Vm ) • probability of the 4 « gates » to be open : n 4 • maximal K+ conductance : G K open closed β ( Vm ) • K+ conductance of the cell : G K n 4 probability probability at a given Vm : n ( t + δ t ) = n ( t ) + α . (1 − n ( t )) . δ t − β . n ( t ) . δ t n ( t + δ t ) − n ( t ) = α . (1 − n ( t )) − β . n ( t ) δ t dn dt = α − ( α + β ) . n α + β . dn 1 α dt = α + β − n 1 α τ . dn with τ = α + β and n ∞ = dt = n ∞ − n α + β − t τ ) n ( t ) = n 0 − ( n 0 − n ∞ ) . (1 − e I K = G K . n 4 ( t , Vm ) . ( Vm − E K ) ; the kinetics of the current at Vm is defined by τ and n ∞

  22. experiments I K = G K . n 4 ( t , Vm ) . ( Vm − E K ) ; the kinetics of the current at Vm is defined by τ and n ∞ Recording the current evoked at different Vm : • control Vm : voltage-clamp (impossible in vivo , non perfect in vitro , achievable for recombinant channels) • isolate the current : pharmacology, recording solutions I K ∞ = G K . n 4 ∞ ( Vm ) . ( Vm − E K ) I K ∞ V m +40 I K ∞ n 4 ∞ ( Vm ) = -60 G K . ( Vm − E K ) -80mV

  23. experiments I K = G K . n 4 ( t , Vm ) . ( Vm − E K ) ; the kinetics of the current at Vm is defined by τ and n ∞ I K ∞ = G K . n 4 ∞ ( Vm ) . ( Vm − E K ) n 4 ∞ V m +40 I K ∞ 1 n 4 ∞ ( Vm ) = G K . ( Vm − E K ) = -60 -80mV V 0.5 − Vm 1 + e k Boltzman equation

  24. experiments I K = G K . n 4 ( t , Vm ) . ( Vm − E K ) ; the kinetics of the current at Vm is defined by τ and n ∞ − t τ ) n ( t ) = n 0 − ( n 0 − n ∞ ) . (1 − e at each fixed Vm : τ )] 4 . ( Vm − E K ) − t I K = G K . [ n 0 − ( n 0 − n ∞ ) . (1 − e − t τ )] 4 I K = cste . (1 − e 𝝊 deactivation 𝝊 activation 𝝊 +40 -60 -80mV V m

  25. the theory voltage dependent conductances have potentially 3 main states : Closed - Open - Inactivated α m ( Vm ) 1 - m m β m ( Vm ) G Na + E eq Na + α h ( Vm ) G K + E eq K + 1 - h h -5 β h ( Vm ) -80 -110mV E leak G leak

  26. experiments voltage dependent conductances have potentially 3 main states : Closed - Open - Inactivated G Na + E eq Na + G K + E eq K + m 3 ∞ h ∞ E leak G leak -5 -30 -130mV

  27. experiments voltage dependent conductances have potentially 3 main states : Closed - Open - Inactivated G Na + E eq Na + inactivation kinetics G K + E eq K + E leak G leak 𝝊 (Vm) deinactivation kinetics -5 -30 -130mV

  28. Single compartment HH model G Na + E eq Na + G K + E eq K + E leak G leak Cm . dVm = Ie − G leak . ( Vm − E leak ) − G K . n 4 ( t , Vm ) . ( Vm − E K ) − G Na . m 3 ( t , Vm ) . h ( t , Vm ) . ( Vm − E Na ) dt … add other ionic conductances to include more complex behaviors such as adaptation

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend