from exact asymptotic safety to physics beyond the
play

from exact asymptotic safety to physics beyond the Standard Model - PowerPoint PPT Presentation

from exact asymptotic safety to physics beyond the Standard Model Daniel F Litim Heidelberg, 9 Mar 2017 DF Litim 1102.4624 DF Litim, F Sannino, 1406.2337 AD Bond, DF Litim, 1608.00519 AD Bond, G Hiller, K Kowalska, DF Litim, 1702.01727


  1. from exact asymptotic safety to physics beyond the Standard Model Daniel F Litim Heidelberg, 9 Mar 2017 DF Litim 1102.4624 DF Litim, F Sannino, 1406.2337 AD Bond, DF Litim, 1608.00519 AD Bond, G Hiller, K Kowalska, DF Litim, 1702.01727

  2. standard model local QFT for fundamental interactions strong nuclear force weak force electromagnetic force open challenges what comes beyond the SM? how does gravity fit in?

  3. asymptotic safety idea: some or all couplings achieve Wilson ’71 interacting UV fixed point Weinberg ’79 if so, new directions for BSM physics &, possibly, quantum gravity proof of existence: 4D gauge-Yukawa theory with Litim, Sannino, 1406.2337 exact asymptotic safety Bond, Litim @ERG2016

  4. asymptotic safety today: 1. theorems for asymptotic safety Bond, Litim 1608.00519 2. weakly interacting UV completions of the Standard Model 3. constraints from data (colliders) AD Bond, G Hiller, K Kowalska, DF Litim, 1702.01727

  5. asymptotic safety today: 1. theorems for asymptotic safety Bond, Litim 1608.00519 2. weakly interacting UV completions of the Standard Model 3. constraints from data (colliders) AD Bond, G Hiller, K Kowalska, DF Litim, 1702.01727

  6. conditions for asymptotic safety results Bond, Litim 1608.00519 *) *) *) provided certain auxiliary conditions hold true

  7. basics of asymptotic safety gauge Yukawa theory theory ∂ t α g = − B α 2 g + C α 3 g − D α 2 g α y t = ln µ/ Λ ∂ t α y = E α 2 0 < α ∗ = B/C ⌧ 1 y − F α g α y α ∗ ⌧ 1 in any QFT loop coefficients D, E, F > 0 asymptotic freedom B > 0 C < 0 or C > 0 g = B in the latter case: α ∗ Banks-Zaks IR FP C

  8. basics of asymptotic safety gauge theory ∂ t α g = − B α 2 g + C α 3 g − D α 2 g α y t = ln µ/ Λ ∂ t α y = E α 2 0 < α ∗ = B/C ⌧ 1 y − F α g α y α ∗ ⌧ 1 in any QFT loop coefficients D, E, F > 0 infrared freedom B < 0 2 < 1 C S 11 C G for C < 0 we must have 2

  9. result: 1.0 1 E 8 χ = min C 2 ( R ) C 2 (adj) E 7 19 0.8 24 E 6 13 18 F 4 2 3 SO H N L 0.6 7 12 Χ G 2 SU H N L 1 2 Sp H N L 0.4 3 8 0.2 1 11 asymptotic safety 0.0 5 10 15 20 N

  10. result: 1.0 1 E 8 χ = min C 2 ( R ) C 2 (adj) E 7 19 0.8 24 E 6 13 18 F 4 2 3 SO H N L 0.6 7 12 Χ G 2 SU H N L 1 2 Sp H N L 0.4 3 8 implication: 0.2 B ≤ 0 C > 0 ⇒ 1 11 asymptotic safety no go theorem 0.0 5 10 15 20 N

  11. basics of asymptotic safety gauge theory ∂ t α g = − B α 2 g + C α 3 g − D α 2 g α y t = ln µ/ Λ ∂ t α y = E α 2 0 < α ∗ = B/C ⌧ 1 y − F α g α y α ∗ ⌧ 1 in any QFT loop coefficients D, E, F > 0 infrared freedom B < 0 ⇒ C > 0 B < 0 Bond, Litim 1608.00519

  12. basics of asymptotic safety gauge theory ∂ t α g = − B α 2 g + C α 3 g − D α 2 g α y t = ln µ/ Λ ∂ t α y = E α 2 0 < α ∗ = B/C ⌧ 1 y − F α g α y α ∗ ⌧ 1 in any QFT loop coefficients D, E, F > 0 infrared freedom B < 0 ⇒ C > 0 B < 0 Bond, Litim 1608.00519 can other couplings help? more gauge: useless scalar quartics: useless Yukawas: unique viable option

  13. basics of asymptotic safety gauge Yukawa theory ∂ t α g = − B α 2 g + C α 3 g − D α 2 g α y t = ln µ/ Λ ∂ t α y = E α 2 y − F α g α y α ∗ ⌧ 1 in any QFT loop coefficients D, E, F > 0

  14. basics of asymptotic safety gauge Yukawa theory ∂ t α g = − B α 2 g + C α 3 g − D α 2 g α y t = ln µ/ Λ ∂ t α y = E α 2 y − F α g α y α ∗ ⌧ 1 y = F Yukawa nullcline α ∗ E α ∗ g

  15. basics of asymptotic safety gauge Yukawa theory ∂ t α g = − B α 2 g + C α 3 g − D α 2 g α y t = ln µ/ Λ ∂ t α y = E α 2 y − F α g α y α ∗ ⌧ 1 y = F Yukawa nullcline α ∗ E α ∗ g β g | = ( − B + C 0 α g ) α 2 g C → C 0 = C − D F shifted two-loop E interacting UV fixed point iff D F − C E > 0

  16. basics of asymptotic safety gauge Yukawa theory ∂ t α g = − B α 2 g + C α 3 g − D α 2 g α y t = ln µ/ Λ ∂ t α y = E α 2 y − F α g α y α ∗ ⌧ 1 y = F Yukawa nullcline α ∗ E α ∗ g β g | = ( − B + C 0 α g ) α 2 g gauge-Yukawa fixed point ✓ B ◆ C 0 , B F ( α ⇤ g , α ⇤ y ) = UV or IR C 0 E

  17. basics of asymptotic safety gauge Yukawa theory ∂ t α g = − B α 2 g + C α 3 g − D α 2 g α y t = ln µ/ Λ ∂ t α y = E α 2 y − F α g α y α ∗ ⌧ 1 summary of fixed points Gaussian UV or IR ( α ∗ g , α ∗ y ) = (0 , 0) ✓ B ◆ ( α ∗ y ) = C , 0 g , α ∗ Banks-Zaks IR ✓ B ◆ C 0 , B F ( α ⇤ g , α ⇤ y ) = UV or IR gauge-Yukawa C 0 E

  18. conditions for asymptotic safety results Bond, Litim 1608.00519 *) *) *) provided certain auxiliary conditions hold true

  19. B, C > 0 > C 0 B > 0 > C Y 4 Y 4 G G BZ � � B, C, C 0 > 0 0 > B, C 0 GY Y 4 Y 4 GY G BZ G � �

  20. asymptotic safety 1. theorems for asymptotic safety Bond, Litim 1608.00519 2. weakly interacting UV completions of the Standard Model AD Bond, G Hiller, K Kowalska, DF Litim, 1702.01727 3. constraints from data (colliders) AD Bond, G Hiller, K Kowalska, DF Litim, 1702.01727

  21. asymptotic safety beyond the SM Bond, Hiller, Kowalska, Litim, 1702.01727 ψ i ( R 3 , R 2 , Y ) flavors of BSM fermions N F BSM singlet scalars S ij U ( N F ) × U ( N F ) global flavor symmetry L BSM , Yukawa = − y Tr( ψ L S ψ R + ψ R S † ψ L ) BSM Lagrangean L = L SM + L BSM , kin . + L BSM , pot . + L BSM , Yukawa

  22. UV fixed points

  23. BSM fixed points weak becomes strong α ∗ 2 > 0 FP 2 strong becomes weak α ∗ 3 = 0 δα 2 ( Λ ) , δα 3 ( Λ ) UV critical surface α ∗ 3 > 0 strong remains strong FP 3 α ∗ 2 = 0 weak remains weak δα 2 ( Λ ) , δα 3 ( Λ ) UV critical surface α ∗ → 3 weak becomes the 2 FP 4 new strong α ∗ 2 3 δα 3 ( Λ ) UV critical surface

  24. BSM fixed points FP 2 FP 3 FP 4 α ∗ 3 > 0 α ∗ 2 > 0 α ∗ 2 , α ∗ 3 > 0 α ∗ 2 = 0 α ∗ 3 = 0 R 2 = 1 R 2 = 2 R 2 = 3 R 2 = 3 R 2 = 4 R 2 = 5 R 2 = 1 R 2 = 2 R 2 = 3 15' 15 21 15' 15 10 8 15 10 R 3 R 3 R 3 10 6 8 3 8 6 1 6 3 0 200 400 600 800 0 100 200 300 0 100 200 N F N F N F

  25. summary of fixed points 1 3 6 8 10 5 5 4 4 R 2 3 3 2 2 FP 2 N F 1 1 FP 3 FP 4 1 3 6 8 10 R 3

  26. benchmark models

  27. benchmark models model A “ w e a k b e c o m e s s t r o n g , FP 2 m at c h i ng c r o ss - ov e r s c a l e 1 s t r o n g b e c o m e s w e a k ” s c a l e ( 1 , 4 ,12) ( R 3 , R 2 , N F ) = Α 2 0.1 Α y cross-over 0.01 Α 3 0.001 low scale R 3 = 1 , R 2 = 4 , N F = 12 10 - 4 10 4 10 5 10 6 1000 m H GeV L

  28. benchmark models 1 model B “strong remains strong, FP 3 c r o ss - ov e r s c a l e m at c h i ng weak remains weak” s c a l e 0.1 ( 10 , 1 ,30) ( R 3 , R 2 , N F ) = cross-over Α y Α 3 0.01 Α 2 0.001 low scale R 3 = 10 , R 2 = 1 , N F = 30 10 - 4 1 ¥ 10 4 2 ¥ 10 4 1000 2000 5000 m H GeV L

  29. benchmark models model B weak BZ 0.500 FP 4 Α 2 H model B L 0.100 ( 10 , 1 ,30) ( R 3 , R 2 , N F ) = 0.050 NO Α y matching 0.010 onto SM 0.005 Α 3 0.001 1 10 100 1000 10 4 Μ ê Μ 0

  30. benchmark models model C 1 “strong remains strong FP 3 m at c h i ng c r o ss - ov e r s c a l e weak remains weak” s c a l e 0.1 Α 3 Α y ( 10 , 4 ,80) ( R 3 , R 2 , N F ) = cross-over 0.01 0.001 low scale 10 - 4 R 3 = 10 , R 2 = 4 , N F = 80 Α 2 10 - 5 1 ¥ 10 4 2 ¥ 10 4 1000 2000 5000 m H GeV L

  31. benchmark models model C 0.200 “weak” becomes FP 4 c r o ss - ov e r s c a l e m at c h i ng s c a l e the new “strong” 0.100 Α 2 0.050 ( 10 , 4 ,80) ( R 3 , R 2 , N F ) = Α y 0.020 0.010 0.005 Α 3 0.002 high scale 0.001 R 3 = 10 , R 2 = 4 , N F = 80 5 ¥ 10 10 1 ¥ 10 11 2 ¥ 10 11 5 ¥ 10 11 1 ¥ 10 12 m H GeV L

  32. benchmark models model C 1 “ w e a k b e c o m e s s t r o n g c r o ss - ov e r s c a l e FP 2 m at c h i ng & s t r o n g b e c o m e s w e a k ” FP 2 s c a l e Α 2 (model C) cross-over II 0.1 ( 10 , 4 ,80) ( R 3 , R 2 , N F ) = FP 4 Α y F P 4 “flyby” 0.01 0.001 e l a I c high scale I I Α 3 s r r e e g v v n o o i h - - s s c s s t R 3 = 10 , R 2 = 4 , N F = 80 o o a m r r c c 10 - 4 2 ¥ 10 10 5 ¥ 10 10 1 ¥ 10 11 2 ¥ 10 11 5 ¥ 10 11 1 ¥ 10 12 m H GeV L

  33. benchmark models model D 0.100 “weak stronger FP 4 c r o ss - ov e r s c a l e m at c h i ng than strong” 0.050 s c a l e Α 2 Α 3 ( 3,4 ,290) ( R 3 , R 2 , N F ) = 0.020 cross-over 0.010 0.005 Α y 0.002 low scale 0.001 R 3 = 3 , R 2 = 4 , N F = 290 1000 1500 2000 3000 5000 7000 10 000 m H GeV L

  34. summary of SM matching: when it works genuinely, except in special circumstances FP 2 (competition with other nearby FPs) genuinely, except in special circumstances FP 3 (competition with other nearby FPs)

  35. summary of SM matching: when it works 1 3 6 8 10 5 5 N F 4 4 Μ R 2 FP 4 3 3 2 2 low scale high scale 1 1 no match H weak L no match H strong L 1 3 6 8 10 R 3

  36. asymptotic safety 1. theorems for asymptotic safety Bond, Litim 1608.00519 2. weakly interacting UV completions of the Standard Model 3. constraints from data (colliders) AD Bond, G Hiller, K Kowalska, DF Litim, 1702.01727

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend