frequency response impact of coupling capacitors 1
play

Frequency Response Impact of Coupling Capacitors (1) v R = i i - PowerPoint PPT Presentation

Frequency Response Impact of Coupling Capacitors (1) v R = i i + + v R R 1 /( j C ) sig i sig c 1 v R 1 = i i + + v R R 1 j / [( R R ) C ] sig i sig i sig c 1 v R 1 = i i +


  1. Frequency Response

  2. Impact of Coupling Capacitors (1) v R = i i + + ω v R R 1 /( j C ) sig i sig c 1 v R 1 = × i i + − ω + v R R 1 j / [( R R ) C ] sig i sig i sig c 1 v R 1 = × i i + − ω ω v R R 1 j / sig i sig p 1 1 ω = + p 1 R R C ( ) i sig c 1 High Pass filter with pole at ω p 1 F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (31/42)

  3. Impact of Coupling Capacitors (2) v R = o L + + ω A v R R 1 /( j C ) v 0 i L o c 2 v R 1 = × × o L A + − ω ω v 0 v R R 1 j / i L o p 2 1 ω = + p 2 ( R R ) C L o c 2 High Pass filter with pole at ω p 2 F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (32/42)

  4. Impact of Coupling Capacitors (3) Mid-band gain (caps are short): v R R = = × × o i L A A + + v v 0 v R R R R sig i sig L o Low-frequency Response (included): v R 1 = × i i + − ω ω v R R j 1 / sig i sig p 1 v R 1 = × × o L A + − ω ω v 0 v R R 1 j / i L o p 2 v R R 1 1 = × × × × o i L A + + − ω ω − ω ω v 0 v R R R R 1 j / 1 j / sig i sig L o p p 1 2 v 1 1 Each coupling capacitor = × × o A − ω ω − ω ω v v 1 j / 1 j / introduced a pole sig p 1 p 2 F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (33/42)

  5. Each Capacitor introduces a pole Each capacitor introduces a pole: 1) Coupling capacitor at the input: 1 = π f + p 1 2 ( R R ) C i sig c 1 2) Coupling capacitor at the output: 1 = π f + p 2 2 ( R R ) C o L c 2 3) By-pass capacitor (CE wit R E , CS with R S , CB)* 1 = f π p 3 2 R C − − by pass by pass  Exact calculation of the lower cut-off frequency can only be done numerically.  A surprisingly good approximation is ≈ + + f f f ... p p 1 p 2 * Formulas for R by-pass are given in the Amp. summary sheets. F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (34/42)

  6. Multi-Stage Amplifiers

  7. Gain of a multi-stage amplifier Example: A 3-stage amplifier R = R o o , 3 v R v = = = v = = = i , 1 i , 1 i R R v , v v v v + i i , 1 o o , 3 o , 1 i , 2 o , 2 i , 3 v v R R sig sig i , 1 sig v v v v v = = × × o , 3 o , 1 o , 2 o , 3 o v R v v v v v = × × × × o i i i i o o , 1 , 1 , 1 , 1 , 2 A A A ... + v 1 v 2 v 3 v R R sig i sig = = v v v v o 1 i 2 o 2 i 3 But we need to know R L, 1 , R L, 2 , v v v v = × × = × × o , 1 o , 2 o , 3 o R L, 3 , … in order to find A M s. A A A v 1 v 2 v 3 v v v v i i i i , 1 , 1 , 2 , 3 F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (36/42)

  8. What are R L and R sig for each stage? Amp Model for Stage j-1 Amp Model for Stage j+1 = R R − sig , j o , j 1 = R R + L , j i , j 1  R L for each stage is the input resistance of the following stage.  R sig for each stage is the output resistance of the previous stage. F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (37/42)

  9. Procedure for Solving multi-stage Amplifiers Gain & R i : 1.Start from the load side (n th stage), o Find the gain A v,n = ( v o /v i ) n and R i,n . 2.For (n-1) th stage, set R L,n -1 = R i,n o Find the gain A v,n- 1 = ( v o /v i ) n- 1 and R i ,n- 1 . 3. Repeat until reaching to the first stage. Then, v R = = × × × × o i R R A A A ... + i i , 1 v 1 v 2 v 3 v R R sig i sig R o : 1. Start from the source side (1 st stage). Find R o, 1 . 2. Go to the second stage. Set R sig, 2 = R o, 1 . Find R o, 2 3.Continue to the last stage (n th stage). Then, R o = R o,n F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (38/42)

  10. What is “Buffer”  Mid-band gain: v R R = × × o i L A + + v 0 v R R R R sig i sig L o  Sever loss in gain if R L is small compared to R o o Main gain cells (CE or CS amps) have an R o of several to 10s of k Ω .  This can be resolves by using a “buffer”: o Ideal Buffer: A vo = 1 , R i = ∞ and R o = 0. o Practical Buffer: A vo ≈ 1 , large R i (several to 10s of M Ω ) and small R o (10s or 100s of Ω ). o CD amplifier (source follower) and CC amplifiers (emitter follower) are examples of practical buffers * There is also loss in gain if R i is small compared to R sig . Buffer circuits can also solve this issues F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (39/42)

  11. Buffer circuit removes the impact of R L = A 1 vo , 2 = R 0 o , 2 = ∞ R i , 2 v R R v = × = × o L , 1 , 1 L , 2 o A A + + vo , 1 vo , 2 v R R v R R i , 1 L , 1 o , 1 i L o , 2 , 2 , 2 v R v R = × = = × = o , 1 i , 2 o L A A 1 1 + + vo , 1 vo , 1 v R v R R 0 i , 2 L i , 1 i , 2 o , 1 v v v v = × × o , 1 o i o v v v v sig sig i , 1 i , 2 v R = × × o i With a buffer : A 1 + vo , 1 Buffer circuit has removed v R R sig i sig the dependence on R o & R L . v R R = × × Without a buffer : o i L A + + v 0 v R R R R sig i sig L o F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (40/42)

  12. Buffer circuit can also be used to remove the impact of low R i = A 1 vo , 1 = R 0 o , 1 = ∞ R i , 1 v R R v = × = × o L , 1 , 1 L , 2 o A A + + v 0 , 1 vo , 2 v R R R v R R v = = i , 1 i , 1 L , 1 o , 1 i L o , 2 , 2 i 1 + v R R v R v R = × = = × sig i , 1 sig o , 1 L , 1 o L A 1 1 + + vo , 2 v R R v R 0 i , 2 L o i , 1 L , 1 v v v v = × × o , 1 o i o v v v v sig sig i , 1 i , 2 v R = × o L With a buffer : A + vo , 2 Buffer circuit has removed the v R R sig L o dependence on R i & R sig . v R R = × × Without a buffer : o i L A + + vo v R R R R sig i sig L o F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (41/42)

  13. Cut-off frequency of a multi-stage amplifier Similar to a single-stage amplifier, each capacitor introduces a pole: 1) Coupling capacitor at the input: 1 = π f + p 1 2 ( R R ) C i sig c 1 2) Coupling capacitor at the output: 1 = π f + po 2 ( R R ) C o L co  The pole due to the C cj , coupling 3) Coupling capacitor between stages j-1 and j capacitor between stages j-1 and j, can be found by considering as the 1 = π f input capacitor to stage j (using + pj 2 ( R R ) C − i j o j cj , , 1 formula from part 1) noting that R sig, j = R o, j-1 . 4) By-pass capacitors for stage j (if exists) 1 = f π p , bypass 2 R C − − by pass by pass ≈ + + 5) Then: f f f ... p p 1 p 2 F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (42/42)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend