freeze in misalignment and non standard thermal histories
play

Freeze-in, Misalignment, and Non-Standard Thermal Histories . . . - PowerPoint PPT Presentation

Nikita Blinov Fermi National Accelerator Laboratory June 4, 2019 Freeze-in, Misalignment, and Non-Standard Thermal Histories . . . . . .. . . . . . . .. . . . . . . .. . . . . . . .. . . .. . . . . . . . . . . . . . . .


  1. Nikita Blinov Fermi National Accelerator Laboratory June 4, 2019 Freeze-in, Misalignment, and Non-Standard Thermal Histories . . . . . .. . . . . . . .. . . . . . . .. . . . . . . .. . . .. . . . . .

  2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2/17 Outline Non-thermal Thermal-ish Thermal coupling to SM relic abundance DM mass

  3. . . . . . . . . . . . . Interactions probed by DD lead . Qualitatively difgerent cosmo/astro if DM/mediator effjciently produced in thermal environments Green and Rajendran (2017) Knapen, Lin and Zurek (2017) DM/mediator attains equilibrium at some point if Scattering Emission/Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . 3/17 Thermal Equilibrium to SM ↔ DM energy transfer DM DM SM SM DM SM SM Γ/ H > 1

  4. . . . . . . . . . . . . . . . . . Reaction rates at fjnite temperature have the form light mediator heavy mediator . . . . . . . . . . . . . . . . . . . . . . 4/17 . Cosmology with Light Particles { λ 2 / T n Γ/ H ∝ λ 2 T n / m 4 Equilibration Equilibration reaction rate per Hubble reaction rate per Hubble Decreasing Coupling Decreasing Mediator Mass time (or 1 /T ) time (or 1 /T )

  5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4/17 . . . . Cosmology with Light Particles If equilibrium attained before BBN (i.e. at T ≳ 5 MeV ) and m ≲ 10 MeV : ρ χ ∼ ρ γ modifjes the expansion rate Heat injection from decay/freeze-out dilutes T ν / T γ , baryon density η b Equilibration Equilibration reaction rate per Hubble reaction rate per Hubble Decreasing Coupling Decreasing Mediator Mass time (or 1 /T ) time (or 1 /T )

  6. . . . . . . . . . . . . . . Aver, Olive & Skillman (2013); Cooke, Pettini & Steidel (2017) with standard BBN Light thermal DM particles can modify 1. Expansion rate: see, e.g., Nollett and Steigman (2013) SM-like N eff b . . . . . . . . . . . . . . 5/17 . . . . . . . . . . . . Constraints from BBN Primordial 4 He and D yields measured precisely ( ≲ 2 % ) 2.6 2.4 2.2 These are in ∼ 1 σ agreement 2.0 1.8 1.6 N eff ∝ ( T ν / T γ ) 4 2. Baryon density η b Success of standard BBN ⇒ thermal, EM-coupled relics have m ≳ few MeV

  7. . . . . . . . . . . . . . . Aver, Olive & Skillman (2013); Cooke, Pettini & Steidel (2017) with standard BBN Light thermal DM particles can modify 1. Expansion rate: see, e.g., Nollett and Steigman (2013) SM-like b . . . . . . . . . . . . . . . . . . . . . . . 5/17 . . . Constraints from BBN Primordial 4 He and D yields measured precisely ( ≲ 2 % ) 2.6 2.4 2.2 N eff ↓ These are in ∼ 1 σ agreement 2.0 1.8 1.6 N eff ∝ ( T ν / T γ ) 4 2. Baryon density η b Success of standard BBN ⇒ thermal, EM-coupled relics have m ≳ few MeV

  8. . . . . . . . . . . . . . . Aver, Olive & Skillman (2013); Cooke, Pettini & Steidel (2017) with standard BBN Light thermal DM particles can modify 1. Expansion rate: see, e.g., Nollett and Steigman (2013) SM-like N eff . . . . . . . . . . . . . . . . . . . . . . . 5/17 . . . Constraints from BBN Primordial 4 He and D yields measured precisely ( ≲ 2 % ) 2.6 2.4 2.2 η b ↑ These are in ∼ 1 σ agreement 2.0 1.8 1.6 N eff ∝ ( T ν / T γ ) 4 2. Baryon density η b Success of standard BBN ⇒ thermal, EM-coupled relics have m ≳ few MeV

  9. . . . . . . . . . . . . . . . CMB sensitive to energy density in free-streaming species ( N eff ) Photon difgusion exponentially damps density perturbations for H Planck constraint on N eff translates into weaken CMB and BBN bounds. Hu, Fukugita, Zaldarriaga and Tegmark (2001) . . . . . . . . . . . . . . . . . . . . . 6/17 . . . . Constraints from the CMB 10 radiation √ n e σ T driving ℓ ≳ ℓ D ∼ ℓ A ( ∆ T l ) 2 damping 1 transfer function x baryon = modulation 0.1 l eq l A l D m χ ≳ few MeV ∗ 10 100 1000 l EM-coupled scalar. ∗ Extra “dark radiation” can ofg-set N eff decrease and

  10. . . . . . . . . . . . . . . . CMB sensitive to energy density in free-streaming species ( N eff ) Photon difgusion exponentially damps density perturbations for H Planck constraint on N eff translates into weaken CMB and BBN bounds. Bashinsky and Seljak (2004), Hou et al (2011) . . . . . . . . . . . . . . 6/17 . . . . . . . . . . . Constraints from the CMB Fixed θ s , z eq 1 . 10 ( N eff = 3 . 046) √ n e σ T 1 . 05 ℓ ≳ ℓ D ∼ ℓ A 1 . 00 ∆ N eff = − 1 /C TT ∆ N eff = − 0 . 5 ℓ 0 . 95 ∆ N eff = 0 . 5 C TT ∆ N eff = 1 ℓ 0 . 90 m χ ≳ few MeV ∗ 10 1 10 2 10 3 Multipole ℓ EM-coupled scalar. ∗ Extra “dark radiation” can ofg-set N eff decrease and

  11. . . . . . . . . . . . . . . cannot be thermal? If equilibration occurs after neutrino-photon decoupling Energy conservation ensures Thermal neurtrino-coupled relics avoid BBN + CMB bounds EM-coupled relics still constrained by BBN (large Bartlett & Hall (1991); Chacko et al (2003, 2004); Berlin & NB (2017); Berlin, NB & Li (2019) . . . . . . . . . . . . . . . . . . . . . . . . . . 7/17 Late equilibration Do the CMB+BBN constraints imply that DM with m ≲ few MeV Late Equilibration of Dark Sector Particles reaction rate per Hubble γ, ν ( T ∼ 2 MeV ), coupled Γ /H = 1 N eff is close to SM value γ, ν decoupled time (or 1 /T ) modifjcations of η b )

  12. . . . . . . . . . . . . . . . . . Equilibrium never achieved, density builds up gradually Generic and predicive, but hidden assumption: initial abundance tiny Dodelson and Widrow (1993); Hall, Jedamzik, March-Russell and West (2009) 8/17 . . . . . . . . . . . . . production rate always sub-Hubble . . . . . . . . . . Freeze-in ⇒ non-trivial constraint on cosmology, see Adshead, Cui & Shelton (2016) DD-accessible models feature light m φ < α m e mediator Freeze-In Freeze-in Abundance Evolution Equilibrium reaction rate per Hubble Γ /H = 1 log(abundance) correct relic abundance for λ ∼ 10 − 12 log( m/T ) time (or 1 /T )

  13. . . . . . . . . . . . . . . Mediators other than (dark) photon too constrained Arises as fundamental Plasmon decay contribution previously missed; lowers preferred coupling by a factor of Annihilation Plasmon decay Dvorkin, Lin and Schutz (2019) . . . . . . . . . . . . . . 9/17 . . . . . . . . . . . . Freeze-in Through Dark Photon/Millicharge Portal e χ χγ µ χ A µ , Q χ ≪ 1 L ⊃ eQ χ ¯ χ e millicharge or via A ′ - γ mixing χ γ ∗ χ ≳ 3 for

  14. . . . . . . . . . . . . . . . . . . Dvorkin, Lin and Schutz (2019) . . . . . . . . . . . . 9/17 . . . . . . . . . . Freeze-in Through Dark Photon/Millicharge Portal 10 − 9 Al SC CDMS G2 Super- Millicharge, Q = κg χ /e 10 − 10 Freeze-in 10 − 11 10 − 12 Stellar Emission GaAs ZrTe 5 10 − 13 Al 2 O 3 10 − 14 10 − 3 10 − 2 10 − 1 10 0 m χ [MeV]

  15. . . . . . . . . . . . . . . . . BSM cooling mechanisms change distribution of stars Rafgelt (1996)++; Hardy and Lasenby (2016) constraints on detectable models Green and Rajendran (2017) , Knapen, Lin and Zurek (2017) Dvorkin, Lin and Schutz (In progress) Fully non-thermal production mechanisms are required for . . . . . . . . . . . . . . . . . . . . . 10/17 . . . Additional Constraints DM still produced from thermal SM particles ⇒ additional constraints Brighter Red Giants (later 4 He ignition), fewer Horizontal Branch stars (faster 4 He burn) For m ≲ 100 keV , these forbid thermal contact and put severe Frozen-in DM is produced with v χ ≲ 1 (similar to warm DM) m χ ≳ 20 keV m χ ≲ 100 keV

  16. . . . . . . . . . . . . . . . Generic mechanism for light bosonic DM, a (axions, ALPs, moduli,…) Scalar displaced from the origin Oscillations about origin begin when Energy density redshifts as matter: . . . . . . . . . . . . . . 11/17 . . . . . . . . . . . Misalignment 1.0 0.8 0.6 0.4 0.2 0.0 of its potential with a i = θ 0 f a - 0.2 0.1 1 10 100 1 m a ∼ H 0.100 0.010 0.001 ρ a ∝ 1/ a 3 0.1 1 10 100

  17. . Evolution before nucleosynthesis . . . . . . . . Final abundance depends on evolution of the total energy density . . m a a 12/17 radiation NB, Dolan, Draper & Kozaczuk (2019) matter Visinelli & Gondolo (2009)+ kination correct abundance obtained for difgerent values of m a , f a depending on cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sensitivity to Early Cosmology Fractional ALP Density Evolution 10 − 4 10 − 6 Early Matter Domination Radiation 10 − 8 ρ a /ρ tot T ≳ 5 MeV unknown: T RH , T kin 10 − 10 Kination  ( ) 2 ( ) 1/2 a − 4 10 − 12 h 2 = 0 . 12 f a θ 0 Ω RD   10 13 GeV µ eV a − 3 ρ tot ∝ 10 − 14 10 0 10 1 10 2 10 3 10 4   a − 6 R/R osc Smaller f a ⇒ larger coupling to SM g a γγ ∝ 1/ f a

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend