free energy and phase equilibria
play

Free Energy and Phase Equilibria Thermodynamic Integration (7.1) - PowerPoint PPT Presentation

Free Energy and Phase Equilibria Thermodynamic Integration (7.1) Chemical Potentials (7.2) Overlapping Distributions (7.2) Umbrella Sampling (7.4) (Application: Phase Diagram of Carbon) Why Free Energies? Reaction equilibrium


  1. Free Energy and Phase Equilibria Thermodynamic Integration (7.1) Chemical Potentials (7.2) Overlapping Distributions (7.2) Umbrella Sampling (7.4) (Application: Phase Diagram of Carbon)

  2. Why Free Energies? • Reaction equilibrium constants A ↔ B K = [ B ] [ A ] = p B [ ] = exp − β ( G B − G A ) p A • Examples: – Chemical reactions: e.g. catalysis, etc.... – Protein folding, binding: free energy gives binding constants • Phase diagrams – Prediction of thermodynamic stability of phases – Coexistence lines – Critical points – Triple points – First order/second order phase transitions

  3. Phase diagrams Along the liquid-gas coexistence line increasing the pressure and Critical point: no transition between temperature at constant volume the liquid and vapor liquid density becomes lower and the vapor density higher. Triple point: liquid, vapor and solid in equilibrium. Carbon Phase Diagram How do we compute these lines?

  4. Phase equilibrium Criteria for equilibrium (for single component) µ I = µ II T I = T II P I = P II Chemical potential # & # & µ = ∂ F = ∂ G = G m % ( % ( $ ∂ N ' $ ∂ N ' V , T P , T If µ I > µ II : transport of particles from phase I to phase II. Stable phase: Lowest chemical potential (for single phase: lowest Gibbs free energy)

  5. Relation thermodynamic potentials Helmholtz free energy: ! = # − %& ' = ! + )* Gibbs free energy: Suppose we have !(,, *, %) Then we can find G from F from: # & G = F − ∂ F $ ' P = − ∂ F V % ( & ) ∂ V $ ' % ∂ V ( n , T n , T All thermodynamic quantities can be derived from F and its derivatives

  6. Phase equilibria from F(V,T) 0 = D G = D F + P D V Common tangent construction D F = -P D V liquid Equal tangents F $ ' P = − ∂ F & ) ∂ V % ( n , T gas Connecting line: equal V

  7. We need F (or G ) We can calculated F(V), using equation of state P(V) • # & ∂ F V ∫ ∫ F ( V ) = F ( V 0 ) + dV = F ( V 0 ) − P dV % ( $ ∂ V ' V 0 N,T P ( # ρ ) ρ ( V=N / r ) ∫ F ( ρ ) = F ( ρ 0 ) + N d # ρ ρ 2 ρ 0 • So in fact for only 1 point of the equation of state the F is needed • For liquid e.o.s even from ideal gas β P ( $ ρ ) - $ ρ β F ( ρ )/ N = β F id ( ρ )/ N + ρ ∫ d $ ρ ρ 2 0

  8. Equation of state ( ) P = P ρ , T # & ∂ F = − P % ( ∂ V $ ' N , T P ( # ρ ) ρ ∫ F ( ρ ) = F ( ρ 0 ) + N d # ρ ρ 2 ρ 0 β P ( $ ρ ) - $ ρ β F ( ρ )/ N = β F id ( ρ )/ N + ρ ∫ d $ ρ ρ 2 0

  9. Free Energies and Phase Equilibria General Strategies Determine free energy of both phases separately, relative to a reference state • Free-energy difference calculation General applicable: Gas, Liquid, Solid, Inhomogeneous systems, … • Determine free energy difference between two phases Gibbs Ensemble Specific applicable: Gas, Liquid

  10. Statistical Thermodynamics Probability to find a particular configuration (NVT) 1 1 δ r' N − r N [ ] ∝ exp − β U r N [ ] ( ) = ( ) exp − β U r' N ( ) ( ) P r N ∫ dr' N Λ 3 N N ! Q NVT Partition function 1 [ ] ( ) ∫ dr N exp − β U r N Q NVT = Λ 3 N N ! Free energy ( ) F ln Q β = − NVT Ensemble average 1 1 [ ] ( ) exp − β U r N ( ) ∫ dr N A r N A NVT = Λ 3 N N ! Q NVT

  11. Ensemble average versus free energy N ! ,r M { N ,r 2 N ,r 3 N ,r 4 N } Generate configuration using MC: r 1 dr N A r N M [ ] ( ) ( ) ∫ exp − β U r N A = 1 ( ) ∑ N A r i = A NVT ≈ dr N exp − β U r N M [ ] ( ) ∫ i = 1 N ! ,r M { N ,r 2 N ,r 3 N ,r 4 N } r Generate configuration using MD: 1 M T A = 1 ( ) ≈ 1 ∑ N ∫ ∫ A r i dtA ( t ) ≈ A M T NVT ergodicity i = 1 0 1 [ ] ( ) ∫ dr N exp −β U r N β F = − ln Q NVT = − ln Λ 3 N N ! F is difficult, because requires measuring the phase space volume

  12. I - Thermodynamic integration l =0 • Known reference state l =1 • Unknown target state Reference System Coupling parameter Target System ( ) = 1 − λ ( ) U I + λ U II U λ 1 ∫ dr N [ ] ( ) = ( ) Q NVT λ exp − β U λ Λ 3 N N ! # & λ = 1 ( ) d λ ∂ F λ ∫ F ( λ = 1) − F ( λ = 0) = % ( ∂ λ $ ' λ = 0 N , V , T

  13. Thermodynamic integration $ ' ( ) ∂ F λ = − 1 ( ) = − 1 1 ∂ Q ∂ ∂ λ ln Q & ) Q ∂ λ β β ∂ λ % ( N , T dr N ∂ U λ ∫ ( ) [ ] ( ) ∂ λ ( ) exp − β U λ = ∫ dr N [ ] ( ) exp − β U λ ( ) U ∂ λ = ∂ λ λ Free-energy difference as ensemble average! ( ) ∫ λ ∂ U λ ( ) − F λ = 0 ( ) = F λ = 1 d ∂ λ λ

  14. Example • In general ( ) = (1 − λ ) U I + λ U II U λ ( ) ∂ U λ = U II − U I λ ∂ λ λ • Specific example ( ) = U LJ + λ U dipole-dipole U λ ( ) = U LJ Lennard-Jones U 0 ( ) = U Stockm U 1 Stockmayer ( ) ∂ U λ = U dip − dip ∂ λ λ λ

  15. Free energy of solid More difficult. What is reference? Not the ideal gas. One (natural) choice is an Einstein crystal: harmonic oscillators around r 0 N ( ) = (1 − λ ) U r N ( ) + λ U r ( ) + λ U λ ; r N N ∑ i ) 2 α ( r i − r 0 i = 1 λ = 1 ( ) d λ ∂ U λ Note, here: _ ∫ F = F ein + l = 1 Reference System ∂ λ l = 0 Target System λ = 0 λ N λ = 1 _ ( ) + ( ) + U r N ∫ − U r N ∑ i ) 2 F = F ein + d λ α ( r i − r 0 λ = 0 i = 1 λ

  16. Hard sphere freezing P Solid free energy from liquid free Einstein crystal energy from Ideal gas Equal µ/ P (and T) r

  17. II - Thermodynamic perturbation Two systems: System 0: N, V, T, U 0 System 1: N, V, T, U 1 Q 0 = V N 1 = V N ∫ d s N ∫ d s N ( ) ( ) exp − β U 0 Q exp − β U 1 Λ 3 N N ! Λ 3 N N ! ( ) Δ β F = β F 1 − β F 0 = − ln Q 1 Q 0 d s N exp − β U 1 $ & ∫ % ' = − ln d s N ( ) exp − β U 0 ∫ $ & d s N ( ) $ & exp − β U 1 − U 0 ' exp − β U 0 ∫ % ' % = − ln d s N ( ) exp − β U 0 ∫ F ln exp U U ( ) Δ β = − − β − $ % & ' 1 0 0

  18. Particle Insertion Method Q NVT = V N [ ] ( ) ∫ ds N exp − β U s N ; L Λ 3 N N ! ( ) β F = − ln Q NVT $ ' V N ( ) [ ] ( ) ∫ ds N exp − β U s N ; L = − ln ) − ln & Λ 3 N N ! % ( % ( 1 ( ) [ ] ( ) ∫ ds N exp − β U s N ; L = − N ln * + N − ln ' Λ 3 ρ & ) β F = β F IG + β F ex } β µ = β µ IG + β µ ex IG ex F F & # & # ∂ β ∂ β $ ' µ ≡ ∂ F IG ex $ ! $ ! β µ ≡ β µ ≡ & ) $ ! $ ! N N ∂ ∂ % ∂ N ( % " % " V , T V , T V , T

  19. Widom test particle insertion ( ) − β F N ) ( ) F β µ = β F N + 1) ∂ β & # β µ ≡ $ ! N N + 1 − N ∂ % " V , T ( ) = − ln Q N + 1 ( ) Q N $ ' V N + 1 & ) $ ' Λ 3 N + 3 N + 1 [ ] ( ) ∫ ds N + 1 exp − β U s N + 1 ; L ( ) ! & ) & ) = − ln − ln V N [ ] & ) ( ) & ) ∫ ds N exp − β U s N ; L % ( & ) Λ 3 N N ! % ( $ ' [ ] ( ) ∫ ds N + 1 exp − β U s N + 1 ; L $ ' V & ) = − ln ) − ln & Λ 3 N + 1 & [ ] ) ( ) ( ) ∫ ds N exp − β U s N ; L % ( % ( β µ = β µ IG + β µ ex % ( [ ] ( ) ∫ ds N + 1 exp − β U s N + 1 ; L β µ ex = − ln ' * ' [ ] * ( ) ∫ ds N exp − β U s N ; L & )

  20. Widom test particle insertion % ( [ ] ( ) ∫ ds N + 1 exp − β U s N + 1 ; L β µ ex = − ln ' * [ ] ' * ( ) ∫ ds N exp − β U s N ; L & ) ) = Δ U + + U s N ; L ( ( ) U s N + 1 ; L & ) exp − β Δ U + + U s N ; L [ ] ( ) ( ) ∫ ds N ∫ ds N + 1 β µ ex = − ln ( + ( + [ ] ( ) ∫ ds N exp − β U s N ; L ' * & ) [ ] { [ ] } exp − β U s N ; L ( ) ∫ ∫ ds N exp − β Δ U + ds N + 1 ( + = − ln ds N exp − β U s N ; L [ ] ( + ( ) ∫ ' * ( ) Ghost particle! [ ] NVT ∫ exp − β Δ U + = − ln ds N + 1

  21. Hard spheres β µ ex = − ln ( ) [ ] NVT ∫ exp − β Δ U + ds N + 1 % r ≤ σ ( ) = ∞ U r & 0 r > σ ' % ] = 0 if overlap [ exp − β Δ U + & 1 no overlap ' [ ] exp − β Δ U + probability to insert a test particle! But, … may fail at high density

  22. Thermodynamic perturbation – Umbrella Sampling Two systems: System 0: N, V, T, U 0 System 1: N, V, T, U 1 Q 0 = V N 1 = V N ∫ d s N ∫ d s N ( ) ( ) exp − β U 0 Q exp − β U 1 Λ 3 N N ! Λ 3 N N ! ( ) Δ β F = β F 1 − β F 0 = − ln Q 1 Q 0 d s N exp − β U 1 $ & ∫ % ' = − ln d s N ( ) exp − β U 0 ∫ $ & d s N ( ) $ & exp − β U 1 − U 0 ' exp − β U 0 ∫ % ' % = − ln d s N ( ) exp − β U 0 ∫ F ln exp U U ( ) Δ β = − − β − $ % & ' 1 0 0

  23. Umbrella sampling • Start with thermodynamic perturbation % ( ∫ d s N ( ) exp − β U 1 ( ) ' * Δ β F = − ln Q 1 Q 0 = − ln ' * ∫ d s N ( ) exp − β U 0 & ) & ) ∫ d s N ( ) exp( − β Δ U ) exp − β U 0 ( ) = ( + exp − β Δ F ( + ∫ d s N ( ) exp − β U 0 ' * ( ) = exp − β Δ U ( ) 0 exp − β Δ F Can we use this for free energy difference between arbitrary systems?

  24. System 1 F ln exp U U ( ) Δ β = − $ − β − % & ' 1 0 0 P( D U) System 0 D U E Overlap becomes very small

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend