fractional quantum hall spectroscopy investigated by a
play

Fractional quantum Hall spectroscopy investigated by a resonant - PowerPoint PPT Presentation

Fractional quantum Hall spectroscopy investigated by a resonant detector Alessandro Braggio CNR-SPIN, Genoa https://sites.google.com/site/alessandrobraggio/ M. Sassetti M.Carrega D.Ferraro Genoa Genoa Geneve-Marseille New. J. Phys. 16


  1. Fractional quantum Hall spectroscopy investigated by a resonant detector Alessandro Braggio CNR-SPIN, Genoa https://sites.google.com/site/alessandrobraggio/ M. Sassetti M.Carrega D.Ferraro Genoa Genoa Geneve-Marseille New. J. Phys. 16 043018 (2014) 2012

  2. FQHE: edge states & qps • Topological protected edge states ν = N • Fractional statistics & charges N Φ Laughlin PRL’83 • Chiral edge states with gapless modes Wen PRB90, Halperin PRB 82, Buttiker PRB 88, Beenakker PRL 90 σ xy = ν e 2 2 np + 1 = 1 , 1 1 3 , 1 • Laughlin sequence h ν = 5 , .. σ xx = 0 2 np + 1 = 2 5 , 2 p • Jain sequence ν = 3 , ... Jain, PRL’89Jain, PRL’89 Jain PRL’89, Wen & Zee PRB’92, Kane & Fisher PRB’95 Kane & Fisher PRB’95 Hierarchical models

  3. Multiple qp excitations Ψ l ( x ) ∝ e l T · K · φ • Hierarchical theories G ( m ) ( τ ) = h Ψ ( m ) ( τ ) Ψ ( m ) † (0) i m = 1 m > 1 G ( m ) ( τ ) / | τ | − ∆ m Single-qp m-agglomerate ∆ m Scaling dimension 1 e ∗ = me ∗ Abelian 2 np + 1 + = • Fractional statistics Ψ ( m ) ( x ) Ψ ( m ) ( y ) = Ψ ( m ) ( y ) Ψ ( m ) ( x ) e − i θ m sgn( x − y ) Laughlin PRL 83, Arovas, Schrieffer & Wilczek PRL 84

  4. QPC:Current & Noise • Weak backscattering current I = ν e 2 m-qps h V � I B I B ⌧ I • Power-law signatures in the scaling dimension ∆ m I ( m ) ∝ V 2 ∆ m − 1 G ( m ) ∝ T 2 ∆ m − 2 B B • Current noise signatures: charge measurement Z + ∞ S ( ω = 0) = h { δ I B ( t ) , δ I B (0) } + i δ I B = I B � h I B i −∞ V ∗ S ( m ) ≈ 2 k B TG B e m � T ✓ me ∗ V ◆ k B S ( m ) = I ( m ) coth B k B T ⌧ me ∗ V S ( m ) ≈ me ∗ I ( m ) 2 k B T B

  5. Multiple-qp evidences • Fractional charges: single-qps evidences Theory:Kane & Fisher PRL 94, Fendley, Ludwig & Saleur PRL 95 Exp:De-Picciotto… Nature 97,Saminadayar.… PRL’97,Reznikov… Nature’99 Robert B. Laughlin, Horst L. Störmer and Daniel C. Tsui "for their discovery of a new form of quantum fluid with fractionally charged excitations" • Multiple-qp. evidences Chung…PRL03, Bid PRL03,Dolev…. e e ff /e ν = 5 / 2 g n g i h n c i h n p c u q n B e p u l q g B n e i l g S n i S T (mK) M. Heiblum (2/5,3/7,2/3,5/2,..),Willet(5/2),Yacoby (2/3),…

  6. Theoretical explanations 1 2 e ∗ e ∗ • Single-qp and multiple-qp crossover ν = 2 5 • Charge and neutral modes • Mode velocity v n ⌧ v c ω n ⌧ ω c D. Ferraro, A. B. , N. Magnoli, M. Sassetti PRL 08,PRB10,NJP10,PRL11 • Renormalization of scaling exponent ∆ m = g c ∆ c m + g n ∆ n m Coupling other degrees: Rosenow & Halperin PRL 02, Papa & MacDonald PRL 05 1/f noise + dissipation: A. B., D. Ferraro, M. Carrega, N. Magnoli, M. Sassetti NJP12

  7. New questions • Qp. charge measurements Kou et al. PRL12,D. T. McClure et al. PRL12, Safi & Sukhorukov EPL10 • Contropropagating neutral modes evidences Bid et al., Nature 10, Gross et al. PRL12, Gurman et al. Nature 12, Shtanko et al PRB14, Takei et al. PRB11, Dolev et al. PRL11 • Heat transport & neutral modes proliferation Altimiras et al PRL12, Aita et al PRB13, Inoue et al. Nature14 • Edge reconstruction & T dependent edge coupling J. Wang et al PRL13, Karzig et al NJP12, Zhang et al 1406.7296 • Imaging of the edge structure N. Paradiso et al. PRB11,PRL12, Pasher et al. PRX14, Kozikov et al NJP13 • Edge model identification Meier et al. 1406.4517

  8. Why not at finite frequency ? ω m = me ∗ V/ ~ • Josephson resonances Blanter&Buettiker Phys.Rep.00, Rogovin&Scalapino Ann. Phys 74 • Rich theoretical tools & interesting non-equilibrium phys. Chamon..PRB95; Chamon..PRB96; Dolcini..PRB05; Bena..PRB06; Bena..PRB07; Sukhorukov..PRB01; Sukhorukov..EPL10; Schoelkopf…03; Deblock…Science ’03; Engel…’04;Hekking….06;…… • Interesting questions: how to measure it? Lesovik..JETP97;Gavish U..PRB00;Gavish U.. arXiv:0211646; Bednorz& Belzig PRL13; Aguado..PRL00; Symmetrized or non-symmetrized ? [ I ( t ) , I ( t 0 )] 6 = 0 • Symmetrized noise (Landau docet) Z + ∞ S ( m ) S ( m ) ( ω ) = X e i ω t h { δ I B ( t ) , δ I B (0) } + i = ( ω ) i −∞ i = ± • Non-symmetrized (Emission/absorption from QPC) Aguado PRL00, Blanter 05, Martin&Crepieux 04-05-06,….. Z + ∞ S ( m ) e ± i ω t h δ I ( m ) ( t ) δ I ( m ) + / − ( ω ) = (0) i B B −∞

  9. Finite frequency detection Lesovik G B and Loosen R JETP 65 295 (1997); Gavish U,….arXiv:0211646 � ( ω ) Emission S ( m ) 50 Ω Resonant + T p 1 /LC ω = T c � � Cold detector � T c ⌧ T Hot detector S ( m ) ( ω ) 25 k Ω Absorption − T c � T • Impedance matched resonant detection scheme Altimiras et al. APL13, PRL14 ω ≈ 5 GHz T ≈ 15 mK δ h x 2 i • Output power proportional to variation of LC energy n h io S ( m ) S ( m ) ( ω ) − S ( m ) S ( m ) meas ( ω ) = K ( ω ) + n B ( ω ) ( ω ) + + − ⌘ 2 1 ⇣ α 1 n B ( ω ) = K = 2 η ⌧ 1 h i G ( m ) e ω /T C − 1 � ω < e ac ( ω ) 2 L

  10. Noise properties in QPC-LC � k B T c ⌧ ω • Detector quantum limit (Cold detector) � � � meas ( ω ) ≈ KS ( m ) S ( m ) ( ω ) + O ( e − ~ ω /k B T c ) + � • Absorbitive QPC limit (Hot detector) k B T c � ω � � � n h io S ( m ) S ( m ) G ( m ) meas ( ω ) ⇡ K ( ω ) � k B T c < e ac ( ω ) + • Is it measurable? ω 0 = e ∗ V/ ~ S meas ≡ S ex T = T c • | t m | 2 • Lowest order in the tunnelling (purely additive) X X S ( m ) S ( m ) S sym ( ω ) = sym ( ω ) S meas ( ω ) = meas ( ω ) m m Γ ( m ) ( E ) • Keldysh formalism blow up in Fermi’s rule: rate

  11. Non-interacting result ν = 1 S meas ( ω , ω 0 ) /K S sym ( ω , ω 0 ) Electron T c = 15mK ω = 7 . 9GHz(60mK) c ) a ) ω c = 660GHz(5K) ∝ V ∝ V T = 0 . 1 , 5 , 15 , 30[mK] ˜ S 0 = e 2 | t 1 | 2 1 S 0 ˜ S sym ( ω , ω 0 ) = 2 [ θ ( ω 0 − ω ) ω 0 + θ ( ω − ω 0 ) ω ] 2 2 πα 2 ω c ω c ✓ ◆ S meas ( ω , ω 0 ) ⇡ KS + ( ω , ω 0 ) = K ω S sym ( ω , ω 0 ) � 2 ˜ S 0 k B T c ⌧ ω 2 ω c Γ (1) ( E ) ∝ θ ( E ) E Lesovik G B and Loosen R JETP 65 295 (1997)

  12. Interacting case: Laughlin ν = 1 / 3 e ∗ = e S sym ( ω , ω 0 ) S meas ( ω , ω 0 ) /K 3 Single-qp T c = 15mK ω = 7 . 9GHz(60mK) b ) d ) ω c = 660GHz(5K) ∝ V ∝ V T = 0 . 1 , 5 , 15 , 30[mK] S sym ( ω , ω 0 ) ≈ | ω − ω 0 | 4 ∆ (1) 1 / 3 − 1 Chamon, Freed & Wen PRB95,PRB96 � • Detector quatum limit k B T c ⌧ ω � � � • QPC Shot noise k B T ⌧ ω 0 ( ω ) ≈ K ( me ∗ ) 2 Γ ( m ) ( − ω + m ω 0 ) meas ( ω , ω 0 ) ≈ S ( m ) S ( m ) m = 1 ω ∼ ω 0 + 2 S ( m ) meas ( ω , ω 0 ) returns directly the rates…….

  13. Rate detection ν = 1 / 3 , 1 / 5 , 1 / 7 T c = 10 , 30 , 60 , 90 mK S ex ( ω , ω 0 ) /K S meas ( ω , ω 0 ) /K Dashed lines T c = T theoretical rates = ν ∆ (1) T = 10mK b ) a ) ν 2 � � � � � � � � It is possible to extract the scaling dimensions without requiring an extended window in frequency and bias simplifying the experimental requirements S meas ≡ S ex T = T c Note that

  14. Hotter is better? Safi & Sukhorukov EPL10 T c = 5 , 15 , 30 , 60 mK ∂ S meas ( ω , ω 0 ) S meas ( ω , ω 0 ) /K K ∂ω 0 ν = 1 / 3 � � � � d ) b ) T c = 15mK ∝ V ∝ V ω = 7 . 9GHz(60mK) ω c = 660GHz(5K) The QPC cannot excite detector modes only absorptive The QPC excites detector The combined effect is an enhancement of jump/peak

  15. Multiple-qp spectroscopy: S meas ν = 2 ν = 2 T = 0 . 1 , 5 , 15 , 30[mK] 5 3 S meas ( ω , ω 0 ) /K S meas ( ω , ω 0 ) /K e ∗ = e e ∗ = e 5 3 c ) d ) S meas ≡ S ex T = T c Note that S meas ( ω , ω 0 ) ≈ α 1 Γ (1) ( ω 0 − ω ) + α 2 Γ (2) (2 ω 0 − ω ) Rates are directly fitted: scaling dimensions at finite T • Multiple-qps are observed in different window •

  16. Conclusion • QPC+LC resonator is a powerful tool • f.f. noise resolve the presence of multiple qps • Multiple-qp spectroscopy can be done at realistic T • Information on qps by analysing bias behaviour • Changing detector temperature increases the sensibility • Validate composite edge model theories • This techniques can be used in other systems New. J. Phys. 16 043018 (2014)

  17. Topological order in IQHE • Topological invariant 2+1D under magnetic field (Kubo) ( v y ) βα ( v x ) αβ − ( v x ) αβ ( v x ) βα X σ xy = − ie 2 ~ ( E α − E β ) 2 E α <E F <E β • Magnetic Brillouin zone (torus) xy = e 2 ✓ ∂ u α ∗ ∂ u α ∂ u α ∗ ∂ u α ◆ Z Z k 1 ,k 2 k 1 ,k 2 k 1 ,k 2 k 1 ,k 2 σ ( α ) d 2 k d 2 r − 2 π i ∂ k 2 ∂ k 1 ∂ k 1 ∂ k 2 xy = ne 2 σ ( α ) Topological invariant h Thouless, Kohmoto, Nightingale,den Nijs PRL’82; Kohmoto Ann. Phys. 160, 343 (1985)

  18. Edge states & Multiple-qp φ i • Chiral Luttinger liquids Wen, Kane & Fisher ,…. L = 1 4 ⇡ ( K ij @ x � i @ t � j + V ij @ x � i @ x � j + 2 ✏ µ ν t j @ µ � j A ν ) Ψ l ( x ) ∝ e l T · K · φ • Multiple-qps excitations • Filling factor ν = t T · K − 1 · t 3-qps qp • Fractional charges q l = 1 2 π l T · K − 1 · t = me ∗ • Fractional statistics θ l = 2 π l T · K − 1 · l 2-qps • Monodromy: qp aquires phase in a loop 2 π around e − e − Wen & Zee PRB 92, J. Fröhlich et al JSTAT 97

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend