fractals statistical models i
play

Fractals & Statistical Models I Nonlinear Computational Science - PowerPoint PPT Presentation

Fractals & Statistical Models I Nonlinear Computational Science in Action by Example Rubin H Landau Sally Haerer, Producer-Director Based on A Survey of Computational Physics by Landau, Pez, & Bordeianu with Support from the National


  1. Fractals & Statistical Models I Nonlinear Computational Science in Action by Example Rubin H Landau Sally Haerer, Producer-Director Based on A Survey of Computational Physics by Landau, Páez, & Bordeianu with Support from the National Science Foundation Course: Computational Physics II 1 / 1

  2. Fractal = Fractional Dimension (Math) Dimension def = ? � = n “fractals:” Mandelbrot, IBM Geometric fractals: 1 d f Statistical: random, local d f Agree: line, triangle, cube Hausdorff–Besicovitch d f Uniform density, side L M ( L ) ∝ L d f Works for 1-D, 2-D, ∝ L d f ρ = M ( L ) ∝ L d f − 2 3-D! A L 2 2 / 1

  3. Our 1st Fractal: Sierpi´ nski Gasket Game of Chance (Randomness) Sierpin.py Draw equilateral triangle. 1 Place dot at P = ( x 0 , y 0 ) within 2 Random 1 2, or 3: 3 If 1, � P = ( � P + � 1)/2 4 If 2, � P = ( � P + � 2)/2 5 If 3, � P = ( � P + � 3)/2 6 Repeat 10,000 × new P 7 300 10,000 points ( x k + 1 , y k + 1 ) =( x k , y k ) + � n 200 2 100 n = int ( 1 + 3 r i ) 0 0 100 200 300 3 / 1

  4. Determine d f via ρ = CL d f − 2 Geometric Sierpi´ nski Gasket (Midpoints) Self-similar: part ∼ whole Dots, m dot = 1, or ln ρ ∝ ( d f − 2 ) log L ρ new = 3 4 ρ old (fills space less) d f − 2 = ∆ log ρ ∆ log L d f = 2 + ∆ log ρ ( L ) ∆ log L = 2 + log 1 − log 3 4 log 1 − log 2 ≃ 1 . 585 4 / 1

  5. Example 2: Beautiful Plants Nature + chance ⇒ high regularity & symmetry? EG fern or tree = beautiful, graceful & random? Key: self-similar, fractal Simple random algorithm ⇒ beauty? If algorithm → ferns ⇒ algorithm ∃ fern? 5 / 1

  6. Self-Affine Connection (Theory) Point–Point Relation ⇒ Self Similarity Recall Sierpi´ nski gasket: ( x k + 1 , y k + 1 ) = ( x k , y k ) / 2 + ( a n , b n ) / 2 s = scaling factor = 1 ( a n , b n ) = translation 2 , s > 0 = amplification, s < 0 = reduction ( x ′ , y ′ ) = s ( x , y ) (General Scaling) ( x ′ , y ′ ) = ( x , y ) + ( a x , a y ) (General Translation) x ′ = x cos θ − y sin θ, (Rotation) y ′ = x sin θ + y cos θ (Rotation) Affine Connection = point–point scale + rotate + translate 6 / 1

  7. Barnsley’s Fern (Fern3D.py) Affine Connection + Random (2D)  ( 0 . 5 , 0 . 27 y n ) , with 2% probability ,      ( − 0 . 139 x n + 0 . 263 y n + 0 . 57     0 . 246 x n + 0 . 224 y n − 0 . 036 ) , with 15% probability ,      ( x , y ) n + 1 = ( 0 . 17 x n − 0 . 215 y n + 0 . 408   0 . 222 x n + 0 . 176 y n + 0 . 0893 ) , with 13% probability ,       ( 0 . 781 x n + 0 . 034 y n + 0 . 1075      − 0 . 032 x n + 0 . 739 y n + 0 . 27 ) , with 70% probability.  Start ( x 1 , y 1 ) = ( 0 . 5 , 0 . 0 ) ∆ d f different parts Repeat iterations Stem = compress fronds Not completely self-similar Nonlinear indirectly 7 / 1

  8. Barnsley’s Fern (Fern3D.py) Affine Connection + Random  2 % , r < 0 . 02 ,      15 % , 0 . 02 ≤ r ≤ 0 . 17 ,   Select with probability P = 13 % , 0 . 17 < r ≤ 0 . 3 ,       70 % , 0 . 3 < r < 1 .  Combined rules (program):  ( 0 . 5 , 0 . 27 y n ) , r < 0 . 02 ,    ( − 0 . 139 x n + 0 . 263 y n + 0 . 57      0 . 246 x n + 0 . 224 y n − 0 . 036 ) , 0 . 02 ≤ r ≤ 0 . 17 ,     ( x , y ) n + 1 = ( 0 . 17 x n − 0 . 215 y n + 0 . 408  0 . 222 x n + 0 . 176 y n + 0 . 0893 ) , 0 . 17 < r ≤ 0 . 3 ,      ( 0 . 781 x n + 0 . 034 y n + 0 . 1075 ,      − 0 . 032 x n + 0 . 739 y n + 0 . 27 ) , 0 . 3 < r < 1 .  8 / 1

  9. Self-Affine Trees (Tree.py)  ( 0 . 05 x n , 0 . 6 y n ) , 10% probability ,     ( 0 . 05 x n , − 0 . 5 y n + 1 . 0 ) , 10% probability ,       ( 0 . 46 x n − 0 . 15 y n , 0 . 39 x n + 0 . 38 y n + 0 . 6 ) , 20% probability ,  ( x n + 1 , y n + 1 ) = ( 0 . 47 x n − 0 . 15 y n , 0 . 17 x n + 0 . 42 y n + 1 . 1 ) , 20% probability ,      ( 0 . 43 x n + 0 . 28 y n , − 0 . 25 x n + 0 . 45 y n + 1 . 0 ) , 20% probability ,      ( 0 . 42 x n + 0 . 26 y n , − 0 . 35 x n + 0 . 31 y n + 0 . 7 ) , 20% probability .  9 / 1

  10. Good Time for a Break 10 / 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend