fourier transform
play

Fourier Transform Saravanan Vijayakumaran sarva@ee.iitb.ac.in - PowerPoint PPT Presentation

Fourier Transform Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay 1 / 11 Definition Fourier transform of a signal s ( t ) s ( t ) e j 2 ft dt S ( f ) =


  1. Fourier Transform Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay 1 / 11

  2. Definition • Fourier transform of a signal s ( t ) � ∞ s ( t ) e − j 2 π ft dt S ( f ) = −∞ • Inverse Fourier transform � ∞ S ( f ) e j 2 π ft df s ( t ) = −∞ • Notation s ( t ) ↔ S ( f ) 2 / 11

  3. Properties of Fourier Transform • Linearity as 1 ( t ) + bs 2 ( t ) ↔ aS 1 ( f ) + bS 2 ( f ) • Duality S ( t ) ↔ s ( − f ) • Conjugation in time corresponds to conjugation and reflection in frequency, and vice versa s ∗ ( t ) ↔ S ∗ ( − f ) s ∗ ( − t ) ↔ S ∗ ( f ) • Real-valued signals have conjugate symmetric Fourier transforms s ( t ) = s ∗ ( t ) = ⇒ S ( f ) = S ∗ ( − f ) 3 / 11

  4. Properties of Fourier Transform • Time scaling � f � s ( at ) ↔ 1 | a | S a • Time shift s ( t − t 0 ) ↔ S ( f ) e − j 2 π ft 0 • Modulation s ( t ) e j 2 π f 0 t ↔ S ( f − f 0 ) • Convolution s 1 ( t ) ∗ s 2 ( t ) ↔ S 1 ( f ) S 2 ( f ) • Multiplication s 1 ( t ) s 2 ( t ) ↔ S 1 ( f ) ∗ S 2 ( f ) 4 / 11

  5. Fourier Transforms using Dirac Function • DC Signal 1 ↔ δ ( f ) • Complex Exponential e j 2 π f c t ↔ δ ( f − f c ) • Sinusoidal Functions cos ( 2 π f c t ) ↔ 1 2 [ δ ( f − f c ) + δ ( f + f c )] sin ( 2 π f c t ) ↔ 1 2 j [ δ ( f − f c ) − δ ( f + f c )] 5 / 11

  6. Properties of Fourier Transform • Parseval’s identity � ∞ � ∞ s 1 ( t ) s ∗ S 1 ( f ) S ∗ 2 ( t ) dt = 2 ( f ) df −∞ −∞ • Energy is independent of representation � ∞ � ∞ E s = � s � 2 = | s ( t ) | 2 dt = | S ( f ) | 2 df −∞ −∞ 6 / 11

  7. Signum Function  + 1 , t > 0 2  sgn ( t ) = 0 , t = 0 1 − 1 , t < 0  0 − 1 − 2 − 2 − 1 0 1 2 t Fourier Transform sgn ( t ) ↔ 1 j π f 7 / 11

  8. Signum Function e − at ,  t > 0 2 a=1.5  g ( t ) = 0 , t = 0 a=0.5 1 − e at , t < 0  0 − 1 − 2 − 2 − 1 0 1 2 t sgn ( t ) = lim a → 0 + g ( t ) − j 4 π f G ( f ) = a 2 + ( 2 π f ) 2 8 / 11

  9. Unit Step Function  1 , t > 0  1 2 u ( t ) = 2 , t = 0 0 , t < 0  1 0 − 1 − 2 − 2 − 1 0 1 2 t Fourier Transform u ( t ) = 1 2 [ sgn ( t ) + 1 ] j 2 π f + 1 1 u ( t ) ↔ 2 δ ( f ) 9 / 11

  10. Rectangular Pulse � | t | ≤ T 2 1 , 2 I [ − T 2 ]( t ) = 2 , T | t | > T 0 , 2 1 0 − 1 − T T 2 2 t 2 T I [ − T 2 ] ( t ) ↔ T sinc ( fT ) 2 , T T 0 − T − 4 − 2 0 2 4 T T T T f 10 / 11

  11. References • pp 13 — 14, Section 2.1, Fundamentals of Digital Communication , Upamanyu Madhow, 2008 11 / 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend