four definitions for the fractional laplacian
play

Four definitions for the fractional Laplacian N. Accomazzo - PowerPoint PPT Presentation

Four definitions for the fractional Laplacian N. Accomazzo (UPV/EHU), S. Baena (UB), A. Becerra Tom e (US), J. Mart nez (BCAM), A. Rodr guez (UCM), I. Soler (UM) VIII Escuela-Taller de An alisis Funcional Basque Center for


  1. Therefore |�∇ 2 u ( x ) y , y � + o ( | x | 3 ) | ˆ = dy | y | n + 2 s | y |≤ 1 Using Cauchy-Schwarz inequality |∇ 2 u ( x ) || y | 2 + | o ( | x | 3 ) | |∇ 2 u ( x ) y || y | + | o ( | x | 3 ) | ˆ ˆ ≤ dy ≤ dy | y | n + 2 s | y | n + 2 s | y |≤ 1 | y |≤ 1 1 ˆ = C | y | n − 2 ( 1 − s ) dy = | y |≤ 1 Group 3 Fractional Laplacian VIII Escuela-Taller 9 / 40

  2. Therefore |�∇ 2 u ( x ) y , y � + o ( | x | 3 ) | ˆ = dy | y | n + 2 s | y |≤ 1 Using Cauchy-Schwarz inequality |∇ 2 u ( x ) || y | 2 + | o ( | x | 3 ) | |∇ 2 u ( x ) y || y | + | o ( | x | 3 ) | ˆ ˆ ≤ dy ≤ dy | y | n + 2 s | y | n + 2 s | y |≤ 1 | y |≤ 1 ˆ 1 1 1 ˆ ˆ = C | y | n − 2 ( 1 − s ) dy = r 1 − 2 s d σ ( ω ) dr < ∞ | y |≤ 1 0 S n − 1 Group 3 Fractional Laplacian VIII Escuela-Taller 9 / 40

  3. Therefore |�∇ 2 u ( x ) y , y � + o ( | x | 3 ) | ˆ = dy | y | n + 2 s | y |≤ 1 Using Cauchy-Schwarz inequality |∇ 2 u ( x ) || y | 2 + | o ( | x | 3 ) | |∇ 2 u ( x ) y || y | + | o ( | x | 3 ) | ˆ ˆ ≤ dy ≤ dy | y | n + 2 s | y | n + 2 s | y |≤ 1 | y |≤ 1 ˆ 1 1 1 ˆ ˆ = C | y | n − 2 ( 1 − s ) dy = r 1 − 2 s d σ ( ω ) dr < ∞ | y |≤ 1 0 S n − 1 Now, for (b): � � 2 u ( x ) − u ( x + y ) − u ( x − y ) 1 ˆ ˆ � � dy � ≤ 4 � u � L ∞ ( R n ) | y | n + 2 s dy < ∞ � � | y | n + 2 s � � | y |≥ 1 | y |≥ 1 � Group 3 Fractional Laplacian VIII Escuela-Taller 9 / 40

  4. Translations and dilations Let h ∈ R n and λ > 0, the translation and dilation operators are defined, respectively, by τ h f ( x ) = f ( x + h ) ; δ λ f ( x ) = f ( λ x ) for every f : R n → R and every x ∈ R n Group 3 Fractional Laplacian VIII Escuela-Taller 10 / 40

  5. Translations and dilations Let h ∈ R n and λ > 0, the translation and dilation operators are defined, respectively, by τ h f ( x ) = f ( x + h ) ; δ λ f ( x ) = f ( λ x ) for every f : R n → R and every x ∈ R n Proposition 1 Let u ∈ S ( R n ) , then for every h ∈ R n and λ > 0 we have ( − ∆ ) s ( τ h u ) = τ h (( − ∆ ) s u ) and ( − ∆ ) s ( δ λ u ) = λ 2 s δ λ (( − ∆ ) s u ) Group 3 Fractional Laplacian VIII Escuela-Taller 10 / 40

  6. Translations and dilations Let h ∈ R n and λ > 0, the translation and dilation operators are defined, respectively, by τ h f ( x ) = f ( x + h ) ; δ λ f ( x ) = f ( λ x ) for every f : R n → R and every x ∈ R n Proposition 1 Let u ∈ S ( R n ) , then for every h ∈ R n and λ > 0 we have ( − ∆ ) s ( τ h u ) = τ h (( − ∆ ) s u ) and ( − ∆ ) s ( δ λ u ) = λ 2 s δ λ (( − ∆ ) s u ) In particular, ( − ∆ ) s is a homogeneous operator of order 2 s . Group 3 Fractional Laplacian VIII Escuela-Taller 10 / 40

  7. Orthogonal group Recall that the orthogonal group is O ( n ) = { T ∈ M n ( R ) : T t T = TT t = I } Group 3 Fractional Laplacian VIII Escuela-Taller 11 / 40

  8. Orthogonal group Recall that the orthogonal group is O ( n ) = { T ∈ M n ( R ) : T t T = TT t = I } The usual Laplacian satisfies ∆ ( u ◦ T ) = ∆ u ◦ T for every T ∈ O ( n ) . What about the fractional Laplacian? Group 3 Fractional Laplacian VIII Escuela-Taller 11 / 40

  9. Orthogonal group Recall that the orthogonal group is O ( n ) = { T ∈ M n ( R ) : T t T = TT t = I } The usual Laplacian satisfies ∆ ( u ◦ T ) = ∆ u ◦ T for every T ∈ O ( n ) . What about the fractional Laplacian? We say that a function f : R n → R has spherical symmetry if f ( x ) = f ∗ ( | x | ) for some f ∗ : R n → R or, equivalently, if f ( Tx ) = f ( x ) for every T ∈ O ( n ) and every x ∈ R Group 3 Fractional Laplacian VIII Escuela-Taller 11 / 40

  10. Orthogonal group Recall that the orthogonal group is O ( n ) = { T ∈ M n ( R ) : T t T = TT t = I } The usual Laplacian satisfies ∆ ( u ◦ T ) = ∆ u ◦ T for every T ∈ O ( n ) . What about the fractional Laplacian? We say that a function f : R n → R has spherical symmetry if f ( x ) = f ∗ ( | x | ) for some f ∗ : R n → R or, equivalently, if f ( Tx ) = f ( x ) for every T ∈ O ( n ) and every x ∈ R Proposition 2 Let u ∈ S ( R n ) (actually, it is enough that u ∈ C 2 ( R n ) ∩ L ∞ ( R n ) ) be a function with spherical symmetry. Then, ( − ∆ ) s has spherical symmetry. Group 3 Fractional Laplacian VIII Escuela-Taller 11 / 40

  11. Orthogonal group (Cont.) PROOF.- Group 3 Fractional Laplacian VIII Escuela-Taller 12 / 40

  12. Orthogonal group (Cont.) PROOF.- Let’s see that ( − ∆ ) s u ( Tx ) = ( − ∆ ) s u ( x ) for each T ∈ O ( n ) and each x ∈ R n Group 3 Fractional Laplacian VIII Escuela-Taller 12 / 40

  13. Orthogonal group (Cont.) PROOF.- Let’s see that ( − ∆ ) s u ( Tx ) = ( − ∆ ) s u ( x ) for each T ∈ O ( n ) and each x ∈ R n 2 u ∗ ( | Tx | ) − u ∗ ( | Tx + y | ) − u ∗ ( | Tx − y | ) ( − ∆ ) s u ( Tx ) = γ ( n , s ) ˆ dy | y | 2 n + s 2 R n 2 u ∗ ( | x | ) − u ∗ ( | x + T t y | ) − u ∗ ( | x − T t y | ) = γ ( n , s ) ˆ dy | y | 2 n + s 2 R n Group 3 Fractional Laplacian VIII Escuela-Taller 12 / 40

  14. Orthogonal group (Cont.) PROOF.- Let’s see that ( − ∆ ) s u ( Tx ) = ( − ∆ ) s u ( x ) for each T ∈ O ( n ) and each x ∈ R n 2 u ∗ ( | Tx | ) − u ∗ ( | Tx + y | ) − u ∗ ( | Tx − y | ) ( − ∆ ) s u ( Tx ) = γ ( n , s ) ˆ dy | y | 2 n + s 2 R n 2 u ∗ ( | x | ) − u ∗ ( | x + T t y | ) − u ∗ ( | x − T t y | ) = γ ( n , s ) ˆ dy | y | 2 n + s 2 R n Change of variable: z = T t y Group 3 Fractional Laplacian VIII Escuela-Taller 12 / 40

  15. Orthogonal group (Cont.) PROOF.- Let’s see that ( − ∆ ) s u ( Tx ) = ( − ∆ ) s u ( x ) for each T ∈ O ( n ) and each x ∈ R n 2 u ∗ ( | Tx | ) − u ∗ ( | Tx + y | ) − u ∗ ( | Tx − y | ) ( − ∆ ) s u ( Tx ) = γ ( n , s ) ˆ dy | y | 2 n + s 2 R n 2 u ∗ ( | x | ) − u ∗ ( | x + T t y | ) − u ∗ ( | x − T t y | ) = γ ( n , s ) ˆ dy | y | 2 n + s 2 R n Change of variable: z = T t y 2 u ∗ ( | x | ) − u ∗ ( | x + z | ) − u ∗ ( | x − z | ) = γ ( n , s ) ˆ dz | Tz | 2 n + s 2 R n Group 3 Fractional Laplacian VIII Escuela-Taller 12 / 40

  16. Orthogonal group (Cont.) PROOF.- Let’s see that ( − ∆ ) s u ( Tx ) = ( − ∆ ) s u ( x ) for each T ∈ O ( n ) and each x ∈ R n 2 u ∗ ( | Tx | ) − u ∗ ( | Tx + y | ) − u ∗ ( | Tx − y | ) ( − ∆ ) s u ( Tx ) = γ ( n , s ) ˆ dy | y | 2 n + s 2 R n 2 u ∗ ( | x | ) − u ∗ ( | x + T t y | ) − u ∗ ( | x − T t y | ) = γ ( n , s ) ˆ dy | y | 2 n + s 2 R n Change of variable: z = T t y 2 u ∗ ( | x | ) − u ∗ ( | x + z | ) − u ∗ ( | x − z | ) = γ ( n , s ) ˆ dz | Tz | 2 n + s 2 R n 2 u ∗ ( | x | ) − u ∗ ( | x + z | ) − u ∗ ( | x − z | ) = γ ( n , s ) ˆ dz = ( − ∆ ) s u ( x ) | z | 2 n + s 2 R n Group 3 Fractional Laplacian VIII Escuela-Taller 12 / 40

  17. Alternative expression for the fractional Laplacian Now we find a new pointwise expression for the fractional Laplacian which will be useful when we prove the equivalence of the different definitions. Group 3 Fractional Laplacian VIII Escuela-Taller 13 / 40

  18. Alternative expression for the fractional Laplacian Now we find a new pointwise expression for the fractional Laplacian which will be useful when we prove the equivalence of the different definitions. Theorem Let u ∈ S ( R n ) , then u ( x ) − u ( y ) ˆ ( − ∆ ) s u ( x ) = γ ( n , s ) P . V . | x − y | n + 2 s dy R n where P.V. means the Cauchy’s principal value, i.e. u ( x ) − u ( y ) u ( x ) − u ( y ) ˆ ˆ P . V . | x − y | n + 2 s dy = lim | x − y | n + 2 s dy ε → 0 + R n | x − y | > ε Group 3 Fractional Laplacian VIII Escuela-Taller 13 / 40

  19. Alternative expression for the fractional Laplacian (Cont.) PROOF.- Group 3 Fractional Laplacian VIII Escuela-Taller 14 / 40

  20. Alternative expression for the fractional Laplacian (Cont.) PROOF.- 2 u ( x ) − u ( x + y ) − u ( x − y ) ( − ∆ ) s u ( x ) = 1 ˆ 2 lim dy | y | n + 2 s ε → 0 + | y | > ε Group 3 Fractional Laplacian VIII Escuela-Taller 14 / 40

  21. Alternative expression for the fractional Laplacian (Cont.) PROOF.- 2 u ( x ) − u ( x + y ) − u ( x − y ) ( − ∆ ) s u ( x ) = 1 ˆ 2 lim dy | y | n + 2 s ε → 0 + | y | > ε = 1 u ( x ) − u ( x + y ) dy + 1 u ( x ) − u ( x − y ) ˆ ˆ 2 lim 2 lim dy | y | n + 2 s | y | n + 2 s ε → 0 + ε → 0 + | y | > ε | y | > ε Group 3 Fractional Laplacian VIII Escuela-Taller 14 / 40

  22. Alternative expression for the fractional Laplacian (Cont.) PROOF.- 2 u ( x ) − u ( x + y ) − u ( x − y ) ( − ∆ ) s u ( x ) = 1 ˆ 2 lim dy | y | n + 2 s ε → 0 + | y | > ε = 1 u ( x ) − u ( x + y ) dy + 1 u ( x ) − u ( x − y ) ˆ ˆ 2 lim 2 lim dy | y | n + 2 s | y | n + 2 s ε → 0 + ε → 0 + | y | > ε | y | > ε Changes of variables: x + y = z in the first integral x − y = z in the second integral Group 3 Fractional Laplacian VIII Escuela-Taller 14 / 40

  23. Alternative expression for the fractional Laplacian (Cont.) PROOF.- 2 u ( x ) − u ( x + y ) − u ( x − y ) ( − ∆ ) s u ( x ) = 1 ˆ 2 lim dy | y | n + 2 s ε → 0 + | y | > ε = 1 u ( x ) − u ( x + y ) dy + 1 u ( x ) − u ( x − y ) ˆ ˆ 2 lim 2 lim dy | y | n + 2 s | y | n + 2 s ε → 0 + ε → 0 + | y | > ε | y | > ε Changes of variables: x + y = z in the first integral x − y = z in the second integral = 1 u ( x ) − u ( z ) | z − x | n + 2 s dz + 1 u ( x ) − u ( z ) ˆ ˆ 2 lim 2 lim | x − z | n + 2 s dz ε → 0 + ε → 0 + | z − x | > ε | x − z | > ε Group 3 Fractional Laplacian VIII Escuela-Taller 14 / 40

  24. Alternative expression for the fractional Laplacian (Cont.) PROOF.- 2 u ( x ) − u ( x + y ) − u ( x − y ) ( − ∆ ) s u ( x ) = 1 ˆ 2 lim dy | y | n + 2 s ε → 0 + | y | > ε = 1 u ( x ) − u ( x + y ) dy + 1 u ( x ) − u ( x − y ) ˆ ˆ 2 lim 2 lim dy | y | n + 2 s | y | n + 2 s ε → 0 + ε → 0 + | y | > ε | y | > ε Changes of variables: x + y = z in the first integral x − y = z in the second integral = 1 u ( x ) − u ( z ) | z − x | n + 2 s dz + 1 u ( x ) − u ( z ) ˆ ˆ 2 lim 2 lim | x − z | n + 2 s dz ε → 0 + ε → 0 + | z − x | > ε | x − z | > ε u ( x ) − u ( z ) ˆ = lim | x − z | n + 2 s dz ε → 0 + | x − z | > ε Group 3 Fractional Laplacian VIII Escuela-Taller 14 / 40

  25. Another two definitions of the fractional Laplacian Group 3 Fractional Laplacian VIII Escuela-Taller 15 / 40

  26. Fourier transform We recall the definition of the Fourier transform, F , of a function f ∈ S ( R n ) : ˆ f ( ξ ) = ( 2 π ) − n / 2 R n f ( x ) e − ix · ξ dx , F ( f )( ξ ) = ˆ ξ ∈ R n , Group 3 Fractional Laplacian VIII Escuela-Taller 16 / 40

  27. Fourier transform We recall the definition of the Fourier transform, F , of a function f ∈ S ( R n ) : ˆ F ( f )( ξ ) = ˆ f ( ξ ) = ( 2 π ) − n / 2 R n f ( x ) e − ix · ξ dx , ξ ∈ R n , whose inverse function is given by ˆ F − 1 ( f )( x ) = ( 2 π ) − n / 2 R n f ( ξ ) e ix · ξ d ξ , x ∈ R n , Group 3 Fractional Laplacian VIII Escuela-Taller 16 / 40

  28. Fourier transform We recall the definition of the Fourier transform, F , of a function f ∈ S ( R n ) : ˆ R n f ( x ) e − 2 π ix · ξ dx , F ( f )( ξ ) = ˆ ξ ∈ R n , f ( ξ ) = whose inverse function is given by ˆ F − 1 ( f )( x ) = R n f ( ξ ) e 2 π ix · ξ d ξ , x ∈ R n , Group 3 Fractional Laplacian VIII Escuela-Taller 16 / 40

  29. Fourier transform We recall the definition of the Fourier transform, F , of a function f ∈ S ( R n ) : ˆ R n f ( x ) e − 2 π ix · ξ dx , F ( f )( ξ ) = ˆ ξ ∈ R n , f ( ξ ) = whose inverse function is given by ˆ F − 1 ( f )( x ) = R n f ( ξ ) e 2 π ix · ξ d ξ , x ∈ R n , so that ˆ f ( x ) = F − 1 ◦ F ( f )( x ) = ( 2 π ) − n / 2 f ( ξ ) e ix · ξ d ξ , ˆ x ∈ R n . R n Group 3 Fractional Laplacian VIII Escuela-Taller 16 / 40

  30. Definition of ( − ∆ ) s via the heat semigroup e t ∆ We will define ( − ∆ ) s f in terms of the heat semigroup e t ∆ , which is nothing but an operator such that maps every function f ∈ S ( R n ) to the solution of the heat equation with initial data given by f : ( x , t ) ∈ R n × ( 0, ∞ ) � v t = ∆ v , x ∈ R n . v ( x , 0 ) = f ( x ) , Using Fourier transform and its inverse and with a bit of magic, we can write ˆ R n e − t | ξ | 2 ˆ ˆ e t ∆ f ( x ) : = v ( x , t ) = ( 2 π ) − n / 2 f ( ξ ) e ix · ξ d ξ = R n W t ( x − z ) f ( z ) dz , where W t ( x ) = ( 4 π t ) − n / 2 e − | x | 2 x ∈ R n , 4 t , is the Gauss-Weierstrass kernel. Group 3 Fractional Laplacian VIII Escuela-Taller 17 / 40

  31. Definition of ( − ∆ ) s via the heat semigroup e t ∆ Inspired by the following numerical identity: for λ > 0, ˆ ∞ 1 ( e − t λ − 1 ) dt λ s = t 1 + s , 0 < s < 1, Γ ( − s ) 0 where ˆ ∞ ( e − r − 1 ) dr Γ ( − s ) = r 1 + s < 0; 0 we can think of ( − ∆ ) s as the following operator ˆ ∞ 1 ( e t ∆ f ( x ) − f ( x )) dt ( − ∆ ) s f ( x ) ∼ t 1 + s , 0 < s < 1. Γ ( − s ) 0 Group 3 Fractional Laplacian VIII Escuela-Taller 18 / 40

  32. Definition of ( − ∆ ) s via the Fourier Transform By the well-known properties of F with respect to derivatives, we have that, for f ∈ S ( R n ) , F [ − ∆ f ]( ξ ) = | ξ | 2 F ( f )( ξ ) , ξ ∈ R n , so it is reasonable to write something like ( − ∆ ) s f ( x ) ∼ F − 1 [ | · | 2 s F ( f )]( x ) , x ∈ R n , 0 < s < 1. Group 3 Fractional Laplacian VIII Escuela-Taller 19 / 40

  33. Definition of ( − ∆ ) s via the Fourier Transform By the well-known properties of F with respect to derivatives, we have that, for f ∈ S ( R n ) , F [ − ∆ f ]( ξ ) = | ξ | 2 F ( f )( ξ ) , ξ ∈ R n , so it is reasonable to write something like ( − ∆ ) s f ( x ) ∼ F − 1 [ | · | 2 s F ( f )]( x ) , x ∈ R n , 0 < s < 1. Group 3 Fractional Laplacian VIII Escuela-Taller 19 / 40

  34. Definition of ( − ∆ ) s via the Fourier Transform By the well-known properties of F with respect to derivatives, we have that, for f ∈ S ( R n ) , F [ − ∆ f ]( ξ ) = | 2 πξ | 2 F ( f )( ξ ) , ξ ∈ R n , so it is reasonable to write something like ( − ∆ ) s f ( x ) ∼ F − 1 [ | 2 π · | 2 s F ( f )]( x ) , x ∈ R n , 0 < s < 1. Group 3 Fractional Laplacian VIII Escuela-Taller 19 / 40

  35. ∼ is = Theorem (Lemma 2.1. P. Stinga’s PhD thesis) Given f ∈ S ( R n ) and 0 < s < 1, ˆ ∞ 1 ( e t ∆ f ( x ) − f ( x )) dt F − 1 [ | · | 2 s F ( f )]( x ) = x ∈ R n t 1 + s , Γ ( − s ) 0 and this two functions coincide in a pointwise way with ( − ∆ ) s f ( x ) when the constant γ ( n , s ) in its definition is given by γ ( n , s ) = 4 s Γ ( n / 2 + s ) − π n / 2 Γ ( − s ) > 0. Group 3 Fractional Laplacian VIII Escuela-Taller 20 / 40

  36. Everybody wants to be the fractional Laplacian Let x ∈ R n . By Fubini’s theorem and inverse Fourier formula, ˆ ∞ ˆ ∞ 1 1 ( e − t | ξ | 2 − 1 ) dt ( e t ∆ f ( x ) − f ( x )) dt ˆ f ( ξ ) e ix · ξ d ξ t 1 + s ˆ t 1 + s = Γ ( − s ) Γ ( − s ) 0 R n 0 ˆ ∞ 1 ˆ ( e − r − 1 ) dr r 1 + s | ξ | 2 s ˆ f ( y ) e ix · ξ dy = Γ ( − s ) R n 0 ˆ R n | ξ | 2 s ˆ f ( ξ ) e ix · ξ d ξ = F − 1 [ | · | 2 s F ( f )]( x ) . = Since f ∈ S ( R n ) , we have that ˆ ∞ | e t ∆ f ( x ) − f ( x ) | dt t 1 + s < ∞ , 0 and so Tonelli authorises us to apply Fubini’s theorem. Group 3 Fractional Laplacian VIII Escuela-Taller 21 / 40

  37. Everybody wants to be the fractional Laplacian Let x ∈ R n . By Fubini’s theorem and inverse Fourier formula, ˆ ∞ ˆ ∞ 1 1 ( e − t | ξ | 2 − 1 ) dt ( e t ∆ f ( x ) − f ( x )) dt ˆ f ( ξ ) e ix · ξ d ξ t 1 + s ˆ t 1 + s = Γ ( − s ) Γ ( − s ) 0 R n 0 ˆ ∞ 1 ˆ ( e − r − 1 ) dr r 1 + s | ξ | 2 s ˆ f ( y ) e ix · ξ dy = Γ ( − s ) R n 0 ˆ R n | ξ | 2 s ˆ f ( ξ ) e ix · ξ d ξ = F − 1 [ | · | 2 s F ( f )]( x ) . = Since f ∈ S ( R n ) , we have that ˆ ∞ | e t ∆ f ( x ) − f ( x ) | dt t 1 + s < ∞ , 0 and so Tonelli authorises us to apply Fubini’s theorem. Group 3 Fractional Laplacian VIII Escuela-Taller 21 / 40

  38. Everybody wants to be the fractional Laplacian Let x ∈ R n . By Fubini’s theorem and inverse Fourier formula, ˆ ∞ ˆ ∞ 1 1 ( e − t | ξ | 2 − 1 ) dt ( e t ∆ f ( x ) − f ( x )) dt ˆ f ( ξ ) e ix · ξ d ξ t 1 + s ˆ t 1 + s = Γ ( − s ) Γ ( − s ) 0 R n 0 ˆ ∞ 1 ˆ ( e − r − 1 ) dr r 1 + s | ξ | 2 s ˆ f ( y ) e ix · ξ dy = Γ ( − s ) R n 0 ˆ R n | ξ | 2 s ˆ f ( ξ ) e ix · ξ d ξ = F − 1 [ | · | 2 s F ( f )]( x ) . = Since f ∈ S ( R n ) , we have that ˆ ∞ | e t ∆ f ( x ) − f ( x ) | dt t 1 + s < ∞ , 0 and so Tonelli authorises us to apply Fubini’s theorem. Group 3 Fractional Laplacian VIII Escuela-Taller 21 / 40

  39. Everybody wants to be the fractional Laplacian Let x ∈ R n . By Fubini’s theorem and inverse Fourier formula, ˆ ∞ ˆ ∞ 1 1 ( e − t | ξ | 2 − 1 ) dt ( e t ∆ f ( x ) − f ( x )) dt ˆ f ( ξ ) e ix · ξ d ξ t 1 + s ˆ t 1 + s = Γ ( − s ) Γ ( − s ) 0 R n 0 ˆ ∞ 1 ˆ ( e − r − 1 ) dr r 1 + s | ξ | 2 s ˆ f ( y ) e ix · ξ dy = Γ ( − s ) R n 0 ˆ R n | ξ | 2 s ˆ f ( ξ ) e ix · ξ d ξ = F − 1 [ | · | 2 s F ( f )]( x ) . = Since f ∈ S ( R n ) , we have that ˆ ∞ | e t ∆ f ( x ) − f ( x ) | dt t 1 + s < ∞ , 0 and so Tonelli authorises us to apply Fubini’s theorem. Group 3 Fractional Laplacian VIII Escuela-Taller 21 / 40

  40. Everybody wants to be the fractional Laplacian Let x ∈ R n . By Fubini’s theorem and inverse Fourier formula, ˆ ∞ ˆ ∞ 1 1 ( e − t | ξ | 2 − 1 ) dt ( e t ∆ f ( x ) − f ( x )) dt ˆ f ( ξ ) e ix · ξ d ξ t 1 + s ˆ t 1 + s = Γ ( − s ) Γ ( − s ) 0 R n 0 ˆ ∞ 1 ˆ ( e − r − 1 ) dr r 1 + s | ξ | 2 s ˆ f ( y ) e ix · ξ dy = Γ ( − s ) R n 0 ˆ R n | ξ | 2 s ˆ f ( ξ ) e ix · ξ d ξ = F − 1 [ | · | 2 s F ( f )]( x ) . = Since f ∈ S ( R n ) , we have that ˆ ∞ | e t ∆ f ( x ) − f ( x ) | dt t 1 + s < ∞ , 0 and so Tonelli authorises us to apply Fubini’s theorem. Group 3 Fractional Laplacian VIII Escuela-Taller 21 / 40

  41. Everybody wants to be the fractional Laplacian Next, we will see that ˆ ∞ t 1 + s = 4 s Γ ( n / 2 + s ) f ( x ) − f ( z ) 1 ( e t ∆ f ( x ) − f ( x )) dt ˆ x ∈ R n . − π n / 2 Γ ( − s ) P.V. | x − z | n + 2 s dz , Γ ( − s ) 0 R n Let ε > 0. Using that � W t ( x − · ) � L 1 ( R n ) = 1 for any x ∈ R n , ˆ ∞ ˆ ∞ ( e t ∆ f ( x ) − f ( x )) dt ˆ R n W t ( x − z )( f ( z ) − f ( x )) dz dt t 1 + s = t 1 + s 0 0 = I ε + II ε . Group 3 Fractional Laplacian VIII Escuela-Taller 22 / 40

  42. Everybody wants to be the fractional Laplacian Next, we will see that ˆ ∞ t 1 + s = 4 s Γ ( n / 2 + s ) f ( x ) − f ( z ) 1 ( e t ∆ f ( x ) − f ( x )) dt ˆ x ∈ R n . − π n / 2 Γ ( − s ) P.V. | x − z | n + 2 s dz , Γ ( − s ) 0 R n Let ε > 0. Using that � W t ( x − · ) � L 1 ( R n ) = 1 for any x ∈ R n , ˆ ∞ ˆ ∞ ( e t ∆ f ( x ) − f ( x )) dt ˆ R n W t ( x − z )( f ( z ) − f ( x )) dz dt t 1 + s = t 1 + s 0 0 = I ε + II ε . Group 3 Fractional Laplacian VIII Escuela-Taller 22 / 40

  43. Everybody wants to be the fractional Laplacian Next, we will see that ˆ ∞ t 1 + s = 4 s Γ ( n / 2 + s ) f ( x ) − f ( z ) 1 ( e t ∆ f ( x ) − f ( x )) dt ˆ x ∈ R n . − π n / 2 Γ ( − s ) P.V. | x − z | n + 2 s dz , Γ ( − s ) 0 R n Let ε > 0. Using that � W t ( x − · ) � L 1 ( R n ) = 1 for any x ∈ R n , ˆ ∞ ˆ ∞ ( e t ∆ f ( x ) − f ( x )) dt ˆ R n W t ( x − z )( f ( z ) − f ( x )) dz dt t 1 + s = t 1 + s 0 0 = I ε + II ε . Group 3 Fractional Laplacian VIII Escuela-Taller 22 / 40

  44. Everybody wants to be the fractional Laplacian Next, we will see that ˆ ∞ t 1 + s = 4 s Γ ( n / 2 + s ) f ( x ) − f ( z ) 1 ( e t ∆ f ( x ) − f ( x )) dt ˆ x ∈ R n . − π n / 2 Γ ( − s ) P.V. | x − z | n + 2 s dz , Γ ( − s ) 0 R n Let ε > 0. Using that � W t ( x − · ) � L 1 ( R n ) = 1 for any x ∈ R n , ˆ ∞ ˆ ∞ ( e t ∆ f ( x ) − f ( x )) dt ˆ R n W t ( x − z )( f ( z ) − f ( x )) dz dt t 1 + s = t 1 + s 0 0 = I ε + II ε . Group 3 Fractional Laplacian VIII Escuela-Taller 22 / 40

  45. Everybody wants to be the fractional Laplacian Next, we will see that ˆ ∞ t 1 + s = 4 s Γ ( n / 2 + s ) f ( x ) − f ( z ) 1 ( e t ∆ f ( x ) − f ( x )) dt ˆ x ∈ R n . − π n / 2 Γ ( − s ) P.V. | x − z | n + 2 s dz , Γ ( − s ) 0 R n Let ε > 0. Using that � W t ( x − · ) � L 1 ( R n ) = 1 for any x ∈ R n , ˆ ∞ ˆ ∞ ( e t ∆ f ( x ) − f ( x )) dt ˆ R n W t ( x − z )( f ( z ) − f ( x )) dz dt t 1 + s = t 1 + s 0 0 = I ε + II ε . Group 3 Fractional Laplacian VIII Escuela-Taller 22 / 40

  46. Everybody wants to be the fractional Laplacian Using Fubini’s theorem, ˆ ∞ ˆ ( 4 π t ) − n / 2 e − | x − z | 2 ( f ( z ) − f ( x )) dt I ε = t 1 + s dz 4 t | x − z | > ε 0 ˆ ∞ ˆ ( 4 π t ) − n / 2 e − | x − z | 2 dt = ( f ( z ) − f ( x )) t 1 + s dz 4 t | x − z | > ε 0 ( f ( x ) − f ( z )) 4 s Γ ( n / 2 + s ) 1 ˆ = | x − z | n + 2 s dz − π n / 2 | x − z | > ε where we used the change of variables r = | x − z | 2 . 4 t Observe that I ε converges absolutely for any ε > 0 since f is bounded, so the use of Fubini’s theorem is licit. Group 3 Fractional Laplacian VIII Escuela-Taller 23 / 40

  47. Everybody wants to be the fractional Laplacian Using Fubini’s theorem, ˆ ∞ ˆ ( 4 π t ) − n / 2 e − | x − z | 2 ( f ( z ) − f ( x )) dt I ε = t 1 + s dz 4 t | x − z | > ε 0 ˆ ∞ ˆ ( 4 π t ) − n / 2 e − | x − z | 2 dt = ( f ( z ) − f ( x )) t 1 + s dz 4 t | x − z | > ε 0 ( f ( x ) − f ( z )) 4 s Γ ( n / 2 + s ) 1 ˆ = | x − z | n + 2 s dz − π n / 2 | x − z | > ε where we used the change of variables r = | x − z | 2 . 4 t Observe that I ε converges absolutely for any ε > 0 since f is bounded, so the use of Fubini’s theorem is licit. Group 3 Fractional Laplacian VIII Escuela-Taller 23 / 40

  48. Everybody wants to be the fractional Laplacian Using Fubini’s theorem, ˆ ∞ ˆ ( 4 π t ) − n / 2 e − | x − z | 2 ( f ( z ) − f ( x )) dt I ε = t 1 + s dz 4 t | x − z | > ε 0 ˆ ∞ ˆ ( 4 π t ) − n / 2 e − | x − z | 2 dt = ( f ( z ) − f ( x )) t 1 + s dz 4 t | x − z | > ε 0 ( f ( x ) − f ( z )) 4 s Γ ( n / 2 + s ) 1 ˆ = | x − z | n + 2 s dz − π n / 2 | x − z | > ε where we used the change of variables r = | x − z | 2 . 4 t Observe that I ε converges absolutely for any ε > 0 since f is bounded, so the use of Fubini’s theorem is licit. Group 3 Fractional Laplacian VIII Escuela-Taller 23 / 40

  49. Everybody wants to be the fractional Laplacian Using Fubini’s theorem, ˆ ∞ ˆ ( 4 π t ) − n / 2 e − | x − z | 2 ( f ( z ) − f ( x )) dt I ε = t 1 + s dz 4 t | x − z | > ε 0 ˆ ∞ ˆ ( 4 π t ) − n / 2 e − | x − z | 2 dt = ( f ( z ) − f ( x )) t 1 + s dz 4 t | x − z | > ε 0 ( f ( x ) − f ( z )) 4 s Γ ( n / 2 + s ) 1 ˆ = | x − z | n + 2 s dz − π n / 2 | x − z | > ε where we used the change of variables r = | x − z | 2 . 4 t Observe that I ε converges absolutely for any ε > 0 since f is bounded, so the use of Fubini’s theorem is licit. Group 3 Fractional Laplacian VIII Escuela-Taller 23 / 40

  50. Everybody wants to be the fractional Laplacian Using polar coordinates, ˆ ∞ ˆ W t ( x − z )( f ( z ) − f ( x )) dz dt II ε = t 1 + s 0 | x − z | < ε ˆ ∞ ˆ ε ( f ( x + rz ′ ) − f ( z )) dS ( z ′ ) dr dt e − r 2 ˆ ( 4 π t ) − n / 2 4 t r n − 1 = t 1 + s . | z ′ | = 1 0 0 By Taylor’s theorem, using the symmetry of the sphere, ˆ ( f ( x + rz ′ ) − f ( z )) dS ( z ′ ) = C n r 2 ∆ f ( x ) + O ( r 3 ) , | z ′ | = 1 thus ˆ ∞ e − r 2 ˆ ε dt 4 t r n + 1 | II ε | ≤ C n , ∆ f ( x ) t n / 2 + s t 0 0 ˆ ε r n + 1 C n , s r − n − 2 s dr = C n , ∆ f ( x ) , s ε 2 ( 1 − s ) . = C n , ∆ f ( x ) 0 Group 3 Fractional Laplacian VIII Escuela-Taller 24 / 40

  51. Everybody wants to be the fractional Laplacian Using polar coordinates, ˆ ∞ ˆ W t ( x − z )( f ( z ) − f ( x )) dz dt II ε = t 1 + s 0 | x − z | < ε ˆ ∞ ˆ ε ( f ( x + rz ′ ) − f ( z )) dS ( z ′ ) dr dt e − r 2 ˆ ( 4 π t ) − n / 2 4 t r n − 1 = t 1 + s . | z ′ | = 1 0 0 By Taylor’s theorem, using the symmetry of the sphere, ˆ ( f ( x + rz ′ ) − f ( z )) dS ( z ′ ) = C n r 2 ∆ f ( x ) + O ( r 3 ) , | z ′ | = 1 thus ˆ ∞ e − r 2 ˆ ε dt 4 t r n + 1 | II ε | ≤ C n , ∆ f ( x ) t n / 2 + s t 0 0 ˆ ε r n + 1 C n , s r − n − 2 s dr = C n , ∆ f ( x ) , s ε 2 ( 1 − s ) . = C n , ∆ f ( x ) 0 Group 3 Fractional Laplacian VIII Escuela-Taller 24 / 40

  52. Everybody wants to be the fractional Laplacian Using polar coordinates, ˆ ∞ ˆ W t ( x − z )( f ( z ) − f ( x )) dz dt II ε = t 1 + s 0 | x − z | < ε ˆ ∞ ˆ ε ( f ( x + rz ′ ) − f ( z )) dS ( z ′ ) dr dt e − r 2 ˆ ( 4 π t ) − n / 2 4 t r n − 1 = t 1 + s . | z ′ | = 1 0 0 By Taylor’s theorem, using the symmetry of the sphere, ˆ ( f ( x + rz ′ ) − f ( z )) dS ( z ′ ) = C n r 2 ∆ f ( x ) + O ( r 3 ) , | z ′ | = 1 thus ˆ ∞ e − r 2 ˆ ε dt 4 t r n + 1 | II ε | ≤ C n , ∆ f ( x ) t n / 2 + s t 0 0 ˆ ε r n + 1 C n , s r − n − 2 s dr = C n , ∆ f ( x ) , s ε 2 ( 1 − s ) . = C n , ∆ f ( x ) 0 Group 3 Fractional Laplacian VIII Escuela-Taller 24 / 40

  53. Everybody wants to be the fractional Laplacian Using polar coordinates, ˆ ∞ ˆ W t ( x − z )( f ( z ) − f ( x )) dz dt II ε = t 1 + s 0 | x − z | < ε ˆ ∞ ˆ ε ( f ( x + rz ′ ) − f ( z )) dS ( z ′ ) dr dt e − r 2 ˆ ( 4 π t ) − n / 2 4 t r n − 1 = t 1 + s . | z ′ | = 1 0 0 By Taylor’s theorem, using the symmetry of the sphere, ˆ ( f ( x + rz ′ ) − f ( z )) dS ( z ′ ) = C n r 2 ∆ f ( x ) + O ( r 3 ) , | z ′ | = 1 thus ˆ ∞ e − r 2 ˆ ε dt 4 t r n + 1 | II ε | ≤ C n , ∆ f ( x ) t n / 2 + s t 0 0 ˆ ε r n + 1 C n , s r − n − 2 s dr = C n , ∆ f ( x ) , s ε 2 ( 1 − s ) . = C n , ∆ f ( x ) 0 Group 3 Fractional Laplacian VIII Escuela-Taller 24 / 40

  54. Everybody wants to be the fractional Laplacian Using polar coordinates, ˆ ∞ ˆ W t ( x − z )( f ( z ) − f ( x )) dz dt II ε = t 1 + s 0 | x − z | < ε ˆ ∞ ˆ ε ( f ( x + rz ′ ) − f ( z )) dS ( z ′ ) dr dt e − r 2 ˆ ( 4 π t ) − n / 2 4 t r n − 1 = t 1 + s . | z ′ | = 1 0 0 By Taylor’s theorem, using the symmetry of the sphere, ˆ ( f ( x + rz ′ ) − f ( z )) dS ( z ′ ) = C n r 2 ∆ f ( x ) + O ( r 3 ) , | z ′ | = 1 thus ˆ ∞ e − r 2 ˆ ε dt 4 t r n + 1 | II ε | ≤ C n , ∆ f ( x ) t n / 2 + s t 0 0 ˆ ε r n + 1 C n , s r − n − 2 s dr = C n , ∆ f ( x ) , s ε 2 ( 1 − s ) . = C n , ∆ f ( x ) 0 Group 3 Fractional Laplacian VIII Escuela-Taller 24 / 40

  55. Everybody IS the fractional Laplacian This proves that II ε → 0 as ε → 0, so ˆ ∞ R n W t ( x − z )( f ( z ) − f ( x )) dz dt ˆ t 1 + s = l´ ε → 0 I ε + II ε ım 0 = 4 s Γ ( n / 2 + s ) f ( x ) − f ( z ) ˆ P.V. | x − z | n + 2 s dz − π n / 2 R n . . ⌣ This kind of computations (bearing in mind the exact expression of the constant γ ( n , s ) ) also prove the following pointwise convergence x ∈ R n as s → 0 + , ( − ∆ ) s f ( x ) → − ∆ f ( x ) , when f ∈ C 2 ( R n ) ∩ L ∞ ( R n ) (observe that, in S ( R n ) this is obvious by the definition via Fourier transform). Group 3 Fractional Laplacian VIII Escuela-Taller 25 / 40

  56. Everybody IS the fractional Laplacian This proves that II ε → 0 as ε → 0, so ˆ ∞ R n W t ( x − z )( f ( z ) − f ( x )) dz dt ˆ t 1 + s = l´ ε → 0 I ε + II ε ım 0 = 4 s Γ ( n / 2 + s ) f ( x ) − f ( z ) ˆ P.V. | x − z | n + 2 s dz − π n / 2 R n . . ⌣ This kind of computations (bearing in mind the exact expression of the constant γ ( n , s ) ) also prove the following pointwise convergence x ∈ R n as s → 0 + , ( − ∆ ) s f ( x ) → − ∆ f ( x ) , when f ∈ C 2 ( R n ) ∩ L ∞ ( R n ) (observe that, in S ( R n ) this is obvious by the definition via Fourier transform). Group 3 Fractional Laplacian VIII Escuela-Taller 25 / 40

  57. Everybody IS the fractional Laplacian This proves that II ε → 0 as ε → 0, so ˆ ∞ R n W t ( x − z )( f ( z ) − f ( x )) dz dt ˆ t 1 + s = l´ ε → 0 I ε + II ε ım 0 = 4 s Γ ( n / 2 + s ) f ( x ) − f ( z ) ˆ P.V. | x − z | n + 2 s dz − π n / 2 R n . . ⌣ This kind of computations (bearing in mind the exact expression of the constant γ ( n , s ) ) also prove the following pointwise convergence x ∈ R n as s → 0 + , ( − ∆ ) s f ( x ) → − ∆ f ( x ) , when f ∈ C 2 ( R n ) ∩ L ∞ ( R n ) (observe that, in S ( R n ) this is obvious by the definition via Fourier transform). Group 3 Fractional Laplacian VIII Escuela-Taller 25 / 40

  58. Everybody IS the fractional Laplacian This proves that II ε → 0 as ε → 0, so ˆ ∞ R n W t ( x − z )( f ( z ) − f ( x )) dz dt ˆ t 1 + s = l´ ε → 0 I ε + II ε ım 0 = 4 s Γ ( n / 2 + s ) f ( x ) − f ( z ) ˆ P.V. | x − z | n + 2 s dz − π n / 2 R n . . ⌣ This kind of computations (bearing in mind the exact expression of the constant γ ( n , s ) ) also prove the following pointwise convergence x ∈ R n as s → 0 + , ( − ∆ ) s f ( x ) → − ∆ f ( x ) , when f ∈ C 2 ( R n ) ∩ L ∞ ( R n ) (observe that, in S ( R n ) this is obvious by the definition via Fourier transform). Group 3 Fractional Laplacian VIII Escuela-Taller 25 / 40

  59. And last but not least Group 3 Fractional Laplacian VIII Escuela-Taller 26 / 40

  60. Extension Problem Let s ∈ ( 0, 1 ) and consider a = 1 − 2 s . We want to solve the extension problem  L a U ( x , y ) = div x , y ( y a ∇ x , y U ) = 0, x ∈ R n + , y > 0,  U ( x , 0 ) = u ( x ) , U ( x , y ) → 0 as y → ∞ .  The previous system can be written as  � � ∂ yy + a x ∈ R n − ∆ x U ( x , y ) = U ( x , y ) , + , y > 0, y ∂ y   (1) U ( x , 0 ) = u ( x ) ,  U ( x , y ) → 0 as y → ∞ .  Group 3 Fractional Laplacian VIII Escuela-Taller 27 / 40

  61. Extension Problem Let s ∈ ( 0, 1 ) and consider a = 1 − 2 s . We want to solve the extension problem  L a U ( x , y ) = div x , y ( y a ∇ x , y U ) = 0, x ∈ R n + , y > 0,  U ( x , 0 ) = u ( x ) , U ( x , y ) → 0 as y → ∞ .  The previous system can be written as  � � ∂ yy + a x ∈ R n − ∆ x U ( x , y ) = U ( x , y ) , + , y > 0, y ∂ y   (1) U ( x , 0 ) = u ( x ) ,  U ( x , y ) → 0 as y → ∞ .  Group 3 Fractional Laplacian VIII Escuela-Taller 27 / 40

  62. Extension Problem Let s ∈ ( 0, 1 ) and consider a = 1 − 2 s . We want to solve the extension problem  L a U ( x , y ) = div x , y ( y a ∇ x , y U ) = 0, x ∈ R n + , y > 0,  U ( x , 0 ) = u ( x ) , U ( x , y ) → 0 as y → ∞ .  The previous system can be written as  � � ∂ yy + a x ∈ R n − ∆ x U ( x , y ) = U ( x , y ) , + , y > 0, y ∂ y   (1) U ( x , 0 ) = u ( x ) ,  U ( x , y ) → 0 as y → ∞ .  Group 3 Fractional Laplacian VIII Escuela-Taller 27 / 40

  63. Extension Problem Theorem 1 (Extension Theorem) Let u ∈ S ( R n ) . Then, the solution U to the extension problem (1) is given by ˆ U ( x , y ) = ( P s ( · , y ) ⋆ u )( x ) = R n P s ( x − z , y ) u ( z ) dz , (2) where y 2 s P s ( x , y ) = Γ ( n / 2 + s ) (3) ( y 2 + | x | 2 ) ( n + 2 s ) / 2 π n / 2 Γ ( s ) is the Poisson Kernel for the extension problem in the half-space R n + 1 . For U as + in (2) one has ( − ∆ ) s u ( x ) = − 2 2 s − 1 Γ ( s ) y → 0 + y 1 − 2 s ∂ y U ( x , y ) . l´ ım (4) Γ ( 1 − s ) Group 3 Fractional Laplacian VIII Escuela-Taller 28 / 40

  64. Extension Problem Theorem 1 (Extension Theorem) Let u ∈ S ( R n ) . Then, the solution U to the extension problem (1) is given by ˆ U ( x , y ) = ( P s ( · , y ) ⋆ u )( x ) = R n P s ( x − z , y ) u ( z ) dz , (2) where y 2 s P s ( x , y ) = Γ ( n / 2 + s ) (3) ( y 2 + | x | 2 ) ( n + 2 s ) / 2 π n / 2 Γ ( s ) is the Poisson Kernel for the extension problem in the half-space R n + 1 . For U as + in (2) one has ( − ∆ ) s u ( x ) = − 2 2 s − 1 Γ ( s ) y → 0 + y 1 − 2 s ∂ y U ( x , y ) . l´ ım (4) Γ ( 1 − s ) Group 3 Fractional Laplacian VIII Escuela-Taller 28 / 40

  65. Extension Problem PROOF If we take a partial Fourier transform of (1) � U ( ξ , y ) + 1 − 2 s U ( ξ , y ) − 4 π 2 | ξ | 2 ˆ in R n + 1 ∂ yy ˆ ∂ y ˆ U ( ξ , y ) = 0 , + y ˆ ˆ x ∈ R n . U ( ξ , 0 ) = ˆ u ( ξ ) , U ( ξ , y ) → 0 as y → ∞ , If we fix ξ ∈ R n \ { 0 } and Y ( y ) = Y ξ ( y ) = ˆ U ( ξ , y ) , ′′ ( y ) + ( 1 − 2 s ) yY ′ ( y ) − 4 π 2 | ξ | 2 y 2 Y ( y ) = 0 y 2 Y � y in R + , Y ( 0 ) = ˆ u ( ξ ) , y ( y ) → 0 as y → ∞ , then it can be compared with the generalized modified Bessel equation: ′′ + ( 1 − 2 α ) yY ′ ( y ) + [ β 2 γ 2 y 2 γ + ( α − ν 2 γ 2 )] Y ( y ) = 0 y 2 Y (5) α = s , γ = 1, ν = s , β = 2 π | ξ | . Group 3 Fractional Laplacian VIII Escuela-Taller 29 / 40

  66. Extension Problem PROOF If we take a partial Fourier transform of (1) � U ( ξ , y ) + 1 − 2 s U ( ξ , y ) − 4 π 2 | ξ | 2 ˆ in R n + 1 ∂ yy ˆ ∂ y ˆ U ( ξ , y ) = 0 , + y ˆ ˆ x ∈ R n . U ( ξ , 0 ) = ˆ u ( ξ ) , U ( ξ , y ) → 0 as y → ∞ , If we fix ξ ∈ R n \ { 0 } and Y ( y ) = Y ξ ( y ) = ˆ U ( ξ , y ) , ′′ ( y ) + ( 1 − 2 s ) yY ′ ( y ) − 4 π 2 | ξ | 2 y 2 Y ( y ) = 0 y 2 Y � y in R + , Y ( 0 ) = ˆ u ( ξ ) , y ( y ) → 0 as y → ∞ , then it can be compared with the generalized modified Bessel equation: ′′ + ( 1 − 2 α ) yY ′ ( y ) + [ β 2 γ 2 y 2 γ + ( α − ν 2 γ 2 )] Y ( y ) = 0 y 2 Y (5) α = s , γ = 1, ν = s , β = 2 π | ξ | . Group 3 Fractional Laplacian VIII Escuela-Taller 29 / 40

  67. Extension Problem PROOF If we take a partial Fourier transform of (1) � U ( ξ , y ) + 1 − 2 s U ( ξ , y ) − 4 π 2 | ξ | 2 ˆ in R n + 1 ∂ yy ˆ ∂ y ˆ U ( ξ , y ) = 0 , + y ˆ ˆ x ∈ R n . U ( ξ , 0 ) = ˆ u ( ξ ) , U ( ξ , y ) → 0 as y → ∞ , If we fix ξ ∈ R n \ { 0 } and Y ( y ) = Y ξ ( y ) = ˆ U ( ξ , y ) , ′′ ( y ) + ( 1 − 2 s ) yY ′ ( y ) − 4 π 2 | ξ | 2 y 2 Y ( y ) = 0 y 2 Y � y in R + , Y ( 0 ) = ˆ u ( ξ ) , y ( y ) → 0 as y → ∞ , then it can be compared with the generalized modified Bessel equation: ′′ + ( 1 − 2 α ) yY ′ ( y ) + [ β 2 γ 2 y 2 γ + ( α − ν 2 γ 2 )] Y ( y ) = 0 y 2 Y (5) α = s , γ = 1, ν = s , β = 2 π | ξ | . Group 3 Fractional Laplacian VIII Escuela-Taller 29 / 40

  68. The general solutions of (5) are given by U ( ξ , y ) = Ay s I s ( 2 π | ξ | y ) + By s K s ( 2 π | ξ | y ) ˆ where I s and K s are the Bessel functions of second and third kind,both independent solutions of the modified Bessel equation of order s ′′ + z φ ′ − ( z 2 + s 2 ) φ = 0 z 2 φ (6) where ⇒ Y ( y ) = y α φ ( β y γ ) solution of (5). φ solution of (6) = Group 3 Fractional Laplacian VIII Escuela-Taller 30 / 40

  69. The general solutions of (5) are given by U ( ξ , y ) = Ay s I s ( 2 π | ξ | y ) + By s K s ( 2 π | ξ | y ) ˆ where I s and K s are the Bessel functions of second and third kind,both independent solutions of the modified Bessel equation of order s ′′ + z φ ′ − ( z 2 + s 2 ) φ = 0 z 2 φ (6) where ⇒ Y ( y ) = y α φ ( β y γ ) solution of (5). φ solution of (6) = Group 3 Fractional Laplacian VIII Escuela-Taller 30 / 40

  70. ( z / 2 ) s + 2 k ∑ ∞ k = 0 ( − 1 ) k J s ( z ) = Γ ( k + 1 ) Γ ( k + s + 1 ) , | z | < ∞ , | arg ( z ) | < π , ( z / 2 ) s + 2 k ∑ ∞ I s ( z ) = Γ ( k + 1 ) Γ ( k + s + 1 ) , | z | < ∞ , | arg ( z ) | < π , k = 0 I − s ( z ) − I s ( z ) π K s ( z ) = | arg ( z ) | < π . , 2 sin π s Group 3 Fractional Laplacian VIII Escuela-Taller 31 / 40

  71. Extension Problem The condition ˆ U ( ξ , y ) → 0 as y → ∞ forces A = 0. Using I s asymptotic behavior, y s I − s ( 2 π | ξ | y ) − y s I s ( 2 π | ξ | y ) By s K s ( 2 π | ξ | y ) = B π 2 sin π s B π 2 s − 1 π Γ ( 1 − s ) sin π s ( 2 π | ξ | ) − s = � � → Γ ( s ) Γ ( s − 1 ) = sin π s = B 2 s − 1 Γ ( s )( 2 π | ξ | ) − s . In order to fulfill the condition ˆ U ( ξ , 0 ) = ˆ u ( ξ ) , we impose U ( ξ , y ) = ( 2 π | ξ | ) s ˆ u ( ξ ) ˆ y s K s ( 2 π | ξ | y ) . (7) 2 s − 1 Γ ( s ) Group 3 Fractional Laplacian VIII Escuela-Taller 32 / 40

  72. Extension Problem The condition ˆ U ( ξ , y ) → 0 as y → ∞ forces A = 0. Using I s asymptotic behavior, y s I − s ( 2 π | ξ | y ) − y s I s ( 2 π | ξ | y ) By s K s ( 2 π | ξ | y ) = B π 2 sin π s B π 2 s − 1 π Γ ( 1 − s ) sin π s ( 2 π | ξ | ) − s = � � → Γ ( s ) Γ ( s − 1 ) = sin π s = B 2 s − 1 Γ ( s )( 2 π | ξ | ) − s . In order to fulfill the condition ˆ U ( ξ , 0 ) = ˆ u ( ξ ) , we impose U ( ξ , y ) = ( 2 π | ξ | ) s ˆ u ( ξ ) ˆ y s K s ( 2 π | ξ | y ) . (7) 2 s − 1 Γ ( s ) Group 3 Fractional Laplacian VIII Escuela-Taller 32 / 40

  73. Extension Problem The condition ˆ U ( ξ , y ) → 0 as y → ∞ forces A = 0. Using I s asymptotic behavior, y s I − s ( 2 π | ξ | y ) − y s I s ( 2 π | ξ | y ) By s K s ( 2 π | ξ | y ) = B π 2 sin π s B π 2 s − 1 π Γ ( 1 − s ) sin π s ( 2 π | ξ | ) − s = � � → Γ ( s ) Γ ( s − 1 ) = sin π s = B 2 s − 1 Γ ( s )( 2 π | ξ | ) − s . In order to fulfill the condition ˆ U ( ξ , 0 ) = ˆ u ( ξ ) , we impose U ( ξ , y ) = ( 2 π | ξ | ) s ˆ u ( ξ ) ˆ y s K s ( 2 π | ξ | y ) . (7) 2 s − 1 Γ ( s ) Group 3 Fractional Laplacian VIII Escuela-Taller 32 / 40

  74. We want to prove U ( x , y ) = ( P s ( · , y ) ⋆ u )( x ) . Taking inverse Fourier transform and using (7), we have to show that � ( 2 π | ξ | ) s y 2 s � = Γ ( n / 2 + s ) F − 1 2 s − 1 Γ ( s ) y s K s ( 2 π | ξ | y ) ( y 2 + | x | 2 ) ( n + 2 s ) / 2 . ξ → x π n / 2 Γ ( s ) Since the function in the left hand-side of (33) is spherically symmetric , proving (33) is equivalent to establishing the follow identity y 2 s F ξ → x ( 2 π s | ξ | s y s K s ( 2 π | ξ | y )) = Γ ( n / 2 + s ) ( y 2 + | x | 2 ) ( n + 2 s ) / 2 . π n / 2 (Hankel transform : H ≡ H − 1 for radial functions.) Group 3 Fractional Laplacian VIII Escuela-Taller 33 / 40

  75. We want to prove U ( x , y ) = ( P s ( · , y ) ⋆ u )( x ) . Taking inverse Fourier transform and using (7), we have to show that � ( 2 π | ξ | ) s y 2 s � = Γ ( n / 2 + s ) F − 1 2 s − 1 Γ ( s ) y s K s ( 2 π | ξ | y ) ( y 2 + | x | 2 ) ( n + 2 s ) / 2 . ξ → x π n / 2 Γ ( s ) Since the function in the left hand-side of (33) is spherically symmetric , proving (33) is equivalent to establishing the follow identity y 2 s F ξ → x ( 2 π s | ξ | s y s K s ( 2 π | ξ | y )) = Γ ( n / 2 + s ) ( y 2 + | x | 2 ) ( n + 2 s ) / 2 . π n / 2 (Hankel transform : H ≡ H − 1 for radial functions.) Group 3 Fractional Laplacian VIII Escuela-Taller 33 / 40

  76. We want to prove U ( x , y ) = ( P s ( · , y ) ⋆ u )( x ) . Taking inverse Fourier transform and using (7), we have to show that � ( 2 π | ξ | ) s y 2 s � = Γ ( n / 2 + s ) F − 1 2 s − 1 Γ ( s ) y s K s ( 2 π | ξ | y ) ( y 2 + | x | 2 ) ( n + 2 s ) / 2 . ξ → x π n / 2 Γ ( s ) Since the function in the left hand-side of (33) is spherically symmetric , proving (33) is equivalent to establishing the follow identity y 2 s F ξ → x ( 2 π s | ξ | s y s K s ( 2 π | ξ | y )) = Γ ( n / 2 + s ) ( y 2 + | x | 2 ) ( n + 2 s ) / 2 . π n / 2 (Hankel transform : H ≡ H − 1 for radial functions.) Group 3 Fractional Laplacian VIII Escuela-Taller 33 / 40

  77. We want to prove U ( x , y ) = ( P s ( · , y ) ⋆ u )( x ) . Taking inverse Fourier transform and using (7), we have to show that � ( 2 π | ξ | ) s y 2 s � = Γ ( n / 2 + s ) F − 1 2 s − 1 Γ ( s ) y s K s ( 2 π | ξ | y ) ( y 2 + | x | 2 ) ( n + 2 s ) / 2 . ξ → x π n / 2 Γ ( s ) Since the function in the left hand-side of (33) is spherically symmetric , proving (33) is equivalent to establishing the follow identity y 2 s F ξ → x ( 2 π s | ξ | s y s K s ( 2 π | ξ | y )) = Γ ( n / 2 + s ) ( y 2 + | x | 2 ) ( n + 2 s ) / 2 . π n / 2 (Hankel transform : H ≡ H − 1 for radial functions.) Group 3 Fractional Laplacian VIII Escuela-Taller 33 / 40

  78. Theorem 2 (Fourier-Bessel Representation) Let u ( x ) = f ( | x | ) , and suppose that t �→ t n / 2 f ( t ) J n / 2 − 1 ( 2 π | ξ | t ) ∈ L 1 ( R n ) . Then, ˆ ∞ u ( ξ ) = 2 π | ξ | − n / 2 + 1 t n / 2 f ( t ) J n / 2 − 1 ( 2 π | ξ | t ) dt . ˆ 0 Then, the latter identity (33) is equivalent to ˆ ∞ 2 2 π s + 1 y s t n / 2 + s K s ( 2 π yt ) J n / 2 − 1 ( 2 π | ξ | t ) dt | x | n / 2 − 1 0 y 2 s = Γ ( n / 2 + s ) ( y 2 + | x | 2 ) ( n + 2 s ) / 2 . π n / 2 Γ ( s ) Group 3 Fractional Laplacian VIII Escuela-Taller 34 / 40

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend