on bounding the union probability
play

On Bounding the Union Probability Jun Yang 1 (Joint work with Fady - PowerPoint PPT Presentation

On Bounding the Union Probability Jun Yang 1 (Joint work with Fady Alajaji 2 and Glen Takahara 2 ) 1 Department of Statistical Sciences, University of Toronto, Canada 2 Department of Mathematics and Statistics, Queens University, Canada IEEE


  1. On Bounding the Union Probability Jun Yang 1 (Joint work with Fady Alajaji 2 and Glen Takahara 2 ) 1 Department of Statistical Sciences, University of Toronto, Canada 2 Department of Mathematics and Statistics, Queen’s University, Canada IEEE ISIT 2015, Hong Kong On Bounding P ( � N J. Yang, et al. i =1 A i ) ISIT 2015 1 / 29

  2. Outline Problem Formulation 1 Recap: Bounds using { P ( A i ) } and { � j P ( A i ∩ A j ) } 2 New Bounds using { P ( A i ) } and { � j c j P ( A i ∩ A j ) } 3 New Bounds using { P ( A i ) } and { P ( A i ∩ A j ) } 4 Summary of Main Results 5 On Bounding P ( � N J. Yang, et al. i =1 A i ) ISIT 2015 2 / 29

  3. Problem Formulation Outline Problem Formulation 1 Recap: Bounds using { P ( A i ) } and { � j P ( A i ∩ A j ) } 2 New Bounds using { P ( A i ) } and { � j c j P ( A i ∩ A j ) } 3 New Bounds using { P ( A i ) } and { P ( A i ∩ A j ) } 4 Summary of Main Results 5 On Bounding P ( � N J. Yang, et al. i =1 A i ) ISIT 2015 3 / 29

  4. Problem Formulation Problem Formulation Bounds on the union probability are very useful in estimating the error probability in (coded or uncoded) communications systems. For example, � N � �� � � max P ( A i ) ≤ P ≤ min P ( A i ) , 1 . (1) A i i i =1 i � N � � � � P A i ≥ P ( A i ) − P ( A i ∩ A j ) . (2) i =1 i < j i Consider a finite family of events A 1 , . . . , A N in a finite discrete probability space (Ω , F , P ), where N is a fixed positive integer. �� N � We are interested in bounding P in terms of the individual i =1 A i event probabilities P ( A i )’s and the pairwise event probabilities P ( A i ∩ A j )’s. On Bounding P ( � N J. Yang, et al. i =1 A i ) ISIT 2015 4 / 29

  5. Problem Formulation Dawson-Sankoff (DS) Bound, 1967 For each outcome x ∈ Ω, let the degree of x , denoted by deg( x ), be the number of A i ’s that contain x . Define a ( k ) := P ( { x ∈ � i A i , deg( x ) = k } ), then one can verify �� � N � = a ( k ) , P A i i k =1 N � � P ( A i ) = ka ( k ) , (3) k =1 i N � k � � � P ( A i ∩ A j ) = a ( k ) . 2 i < j k =2 On Bounding P ( � N J. Yang, et al. i =1 A i ) ISIT 2015 5 / 29

  6. Problem Formulation Dawson-Sankoff (DS) Bound, 1967 �� � i P ( A i ) , � Using ( θ 1 , θ 2 ) := i < j P ( A i ∩ A j ) , the Dawson-Sankoff (DS) Bound: � N � κθ 2 (1 − κ ) θ 2 � 1 1 ≥ + , (4) P A i (2 − κ ) θ 1 + 2 θ 2 (1 − κ ) θ 1 + 2 θ 2 i =1 where κ = 2 θ 2 θ 1 − ⌊ 2 θ 2 θ 1 ⌋ and ⌊ x ⌋ denotes the largest integer less than or equal to x , is the solution of the linear programming (LP) problem: N N � � � min a ( k ) , ka ( k ) = P ( A i ) , s.t. { a ( k ) } k =1 k =1 i N (5) � k � � � a ( k ) = P ( A i ∩ A j ) , 2 k =2 i < j a ( k ) ≥ 0 , k = 1 , . . . , N . On Bounding P ( � N J. Yang, et al. i =1 A i ) ISIT 2015 6 / 29

  7. Recap: Bounds using { P ( A i ) } and { � j P ( A i ∩ A j ) } Outline Problem Formulation 1 Recap: Bounds using { P ( A i ) } and { � j P ( A i ∩ A j ) } 2 New Bounds using { P ( A i ) } and { � j c j P ( A i ∩ A j ) } 3 New Bounds using { P ( A i ) } and { P ( A i ∩ A j ) } 4 Summary of Main Results 5 On Bounding P ( � N J. Yang, et al. i =1 A i ) ISIT 2015 7 / 29

  8. Recap: Bounds using { P ( A i ) } and { � j P ( A i ∩ A j ) } Kuai-Alajaji-Takahara (KAT) Bound, 2000 Remind that a ( k ) := P ( { x ∈ � i A i , deg( x ) = k } ) Define a i ( k ) = P ( { x ∈ A i , deg( x ) = k ), one can verify �� � N a i ( k ) � � � � a i ( k ) = ka ( k ) , ⇒ P A i = a ( k ) = , k i =1 i k k i (6) N N � � � P ( A i ) = a i ( k ) , P ( A i ∩ A j ) = ( k − 1) a i ( k ) . k =1 j : j � = i k =2 We are able to use � � P ( A 1 ) , . . . , P ( A N ) , � j : j � =1 P ( A 1 ∩ A j ) , . . . , � j : j � = N P ( A N ∩ A j ) . On Bounding P ( � N J. Yang, et al. i =1 A i ) ISIT 2015 8 / 29

  9. Recap: Bounds using { P ( A i ) } and { � j P ( A i ∩ A j ) } Kuai-Alajaji-Takahara (KAT) Bound, 2000 γ i := � j P ( A i ∩ A j ) = P ( A i ) + � Let α i := P ( A i ) , j : j � = i P ( A i ∩ A j ). The KAT bound is the solution of the following LP problem: N N N a i ( k ) � � � min , a i ( k ) = α i , i = 1 , . . . , N , s.t. k { a i ( k ) ≥ 0 } k =1 i =1 k =1 (7) N � ka i ( k ) = γ i , i = 1 , . . . , N . k =1 which is given by � N α i − ⌊ γ i γ i � N �� � � α i ⌋ 1 � � P A i ≥ α i ⌋ − α i , (8) ⌊ γ i (1 + ⌊ γ i α i ⌋ )( ⌊ γ i α i ⌋ ) i =1 i =1 where ⌊ x ⌋ is the largest positive integer less than or equal to x . On Bounding P ( � N J. Yang, et al. i =1 A i ) ISIT 2015 9 / 29

  10. Recap: Bounds using { P ( A i ) } and { � j P ( A i ∩ A j ) } Lower Bounds which are sharper than KAT Bound Recall that a ( k ) := P ( { x ∈ � i A i , deg( x ) = k } ) and a i ( k ) = P ( { x ∈ A i , deg( x ) = k ), then we observe a ( k ) ≥ a i ( k ) for all � j a j ( k ) i and all k . Also, since a ( k ) = , one can write k � j a j ( k ) ≥ a i ( k ) k for all i and all k . As a special case for k = N , it reduces to a 1 ( N ) = a 2 ( N ) = · · · = a N ( N ) . On Bounding P ( � N J. Yang, et al. i =1 A i ) ISIT 2015 10 / 29

  11. Recap: Bounds using { P ( A i ) } and { � j P ( A i ∩ A j ) } Optimal Lower Bound ℓ NEW-1 (in ISIT’14) The solution of the following LP problem: N N a i ( k ) � � min , k { a i ( k ) } k =1 i =1 N � s.t. a i ( k ) = P ( A i ) , i = 1 , . . . , N , k =1 (9) N � � ( k − 1) a i ( k ) = P ( A i ∩ A j ) , i = 1 , . . . , N , k =1 j : j � = i � j a j ( k ) ≥ a i ( k ) , i = 1 , . . . , N , k = 1 , . . . , N , k a i ( k ) ≥ 0 , k = 1 , . . . , N , i = 1 , . . . , N . is optimal in the class of lower bounds which are functions of � � P ( A 1 ) , . . . , P ( A N ) , � j : j � =1 P ( A 1 ∩ A j ) , . . . , � j : j � = N P ( A N ∩ A j ) . On Bounding P ( � N J. Yang, et al. i =1 A i ) ISIT 2015 11 / 29

  12. Recap: Bounds using { P ( A i ) } and { � j P ( A i ∩ A j ) } Analytical Lower Bound ℓ NEW-2 (in ISIT’14) The new analytical lower bound is the solution of the LP problem: N N N a i ( k ) � � � min , a i ( k ) = P ( A i ) , i = 1 , . . . , N , s.t. k { a i ( k ) ≥ 0 } i =1 k =1 k =1 N (10) � � ( k − 1) a i ( k ) = P ( A i ∩ A j ) , i = 1 , . . . , N , k =1 j : j � = i a 1 ( N ) = a 2 ( N ) = · · · = a N ( N ) . The new analytical lower bound is given by � N   γ ′ i − χ ( γ ′   � N i ) i i 1  α ′ α ′  � �  α ′ ≥ δ + −  , (11) P A i  i χ ( γ ′ [1 + χ ( γ ′ i )][ χ ( γ ′ i i ) i i i )]  i =1 i =1 α ′ α ′ α ′ where δ := { max i [ γ i − ( N − 1) α i ] } + ≥ 0 , α ′ i := α i − δ, γ ′ i := γ i − N δ , and � n − 1 if x = n where n ≥ 2 is a integer χ ( x ) := ⌊ x ⌋ otherwise On Bounding P ( � N J. Yang, et al. i =1 A i ) ISIT 2015 12 / 29

  13. New Bounds using { P ( A i ) } and { � j c j P ( A i ∩ A j ) } Outline Problem Formulation 1 Recap: Bounds using { P ( A i ) } and { � j P ( A i ∩ A j ) } 2 New Bounds using { P ( A i ) } and { � j c j P ( A i ∩ A j ) } 3 New Bounds using { P ( A i ) } and { P ( A i ∩ A j ) } 4 Summary of Main Results 5 On Bounding P ( � N J. Yang, et al. i =1 A i ) ISIT 2015 13 / 29

  14. New Bounds using { P ( A i ) } and { � j c j P ( A i ∩ A j ) } Gallot-Kounias (GK) Bound, 1968 The GK bound is an analytical bound which fully uses { P ( A i ) } and { P ( A i ∩ A j ) } . Recently, it was re-visited by Feng-Li-Shen 1 that the GK bound can be obtained by � N � i c i P ( A i )] 2 [ � � ≥ ℓ GK = max k c k P ( A i ∩ A k ) . (12) P A i � � i c i c ∈ R N i − 1 Ignoring the maximization over c , the RHS is a lower bound using � i c i P ( A i ) and � k c k P ( A i ∩ A k ). 1 “Some inequalities in functional analysis, combinatorics, and probability theory”, The Electronic Journal of Combinatorics, 2010. On Bounding P ( � N J. Yang, et al. i =1 A i ) ISIT 2015 14 / 29

  15. New Bounds using { P ( A i ) } and { � j c j P ( A i ∩ A j ) } �� N � New expressions for P i =1 A i Denote B as the collection of all non-empty subsets of { 1 , 2 , . . . , N } and let B ∈ B be a non-empty subset of { 1 , 2 , . . . , N } , p B := p ( { ω B , ω B ∈ A i for all i ∈ B , ω B / ∈ A i for all i / ∈ B } ) . (13) �� N � Then we have a new (novel) expression of P i =1 A i for any given c : � N � N � � c i p B � � � � = p B = . (14) P A i � k ∈ B c k i =1 B ∈ B i =1 B ∈ B : i ∈ B Furthermore, we have � P ( A i ) = p B , B ∈ B : i ∈ B (15) N �� � � � � � c k P ( A i ∩ A k ) = c k p B = c k p B . k =1 B : i ∈ B , k ∈ B B : i ∈ B k ∈ B k On Bounding P ( � N J. Yang, et al. i =1 A i ) ISIT 2015 15 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend