fluctuations of the empirical quantiles of independent
play

Fluctuations of the empirical quantiles of independent Brownian - PowerPoint PPT Presentation

Fluctuations of the empirical quantiles of independent Brownian motions Jason Swanson Department of Mathematics University of Central Florida October 9, 2008 -quantiles a probability measure ( ) = ( ) ( , ] x x


  1. Fluctuations of the empirical quantiles of independent Brownian motions Jason Swanson Department of Mathematics University of Central Florida October 9, 2008

  2. α -quantiles ν – a probability measure ( ) Φ = ν −∞ ( ) ( , ] x x ν α ∈ (0,1) An α -quantile of ν is any number q such that Φ − ≤ α ≤ Φ ( ) ( ) q q ν ν { } α ≤ Φ is always an α -quantile of ν . ● inf : ( ) x x ν Φ is continuous, then Φ = α for any α -quantile, q . ● If ( ) q ν ν are α -quantiles, then ( ) < ν = ● If ( , ) 0 . q q q q 1 2 1 2

  3. Order statistics , , … , – random variables X X X 1 2 n σ – a random permutation of { } 1,2, … , n such that ≤ ≤ ≤ � a.s. X X X σ (1) σ (2) σ ( ) n = = The j -th order statistic of ( , , … , ) is X X X X X X σ 1 2 : ( ) n j n j − = − ● ( ) X X : ( − + 1): j n n j n

  4. The model B t – one-dimensional Brownian motion ( ) ( ) C ∞ ∈ R , with + n ( ) < ∞ (0) has a density ( ) sup 1 ( ) for all m n . , m B f x f x ∈ R x α ∈ Fix (0,1) . f x dx has a unique α -quantile, (0) > ( ) ( (0)) 0 Assume , such that . q f q { } – iid copies of B B n : ( ) t – j -th order statistic of ( ( ), ( ), … , ( )) B B t B t B t 1 2 j n n Note: is a continuous process B : j n ( ) { } ∞ ≤ ≤ = α + − 1/2 ( ) n = – integers such that 1 ( ) and ( ) / j n j n n j n n o n 1 = ( ) ( ) Q t B t ( ): n j n n

  5. The model u x t – density of ( , ) B t ( ) q t – unique α -quantile of ( , ) ( ) u x t dx ∂ ( ( ), ) x u q t t ∈ ∞ ∩ C ∞ ∞ and ′ = − t > Lemma: [0, ) (0, ) ( ) for all 0 . q C q t 2 ( ( ), ) u q t t Proof sketch: ( ) ∫ q t α = ≤ = ( ( ) ( )) ( , ) P B t q t u x t dx −∞ ( ) ∫ q t ′ = + ∂ 0 ( ( ), ) ( ) ( , ) u q t t q t u x t dx t −∞ 1 ( ) ∫ q t ′ = + ∂ 2 0 ( ( ), ) ( ) ( , ) u q t t q t u x t dx x 2 −∞ 1 ′ = + ∂ 0 ( ( ), ) ( ) ( ( ), ) u q t t q t u q t t x 2

  6. The model u x t – density of ( , ) B t ( ) q t – unique α -quantile of ( , ) ( ) u x t dx ∂ ( ( ), ) x u q t t ∈ ∞ ∩ C ∞ ∞ and ′ = − t > Lemma: [0, ) (0, ) ( ) for all 0 . q C q t 2 ( ( ), ) u q t t > . Then ∃ t ↓ ε > Proof sketch: Suppose (0) liminf ( ) 0 and 0 s.t. q q t n → 0 t − > ε (0) ( ) , which implies q q t n α = ≤ ≤ ≤ − ε ( ( ) ( )) ( ( ) (0) ) P B t q t P B t q n n n ⎯⎯⎯ →∞ → ≤ − ε ≤ ≤ = α n ( (0) (0) ) ( (0) (0)) . P B q P B q ≤ − ε = α , and the α -quantile is not unique, a Hence, ( (0) (0) ) P B q contradiction. �

  7. The model ( ) = 1/2 − ( ) ( ) ( ) F t n Q t q t n n ⇒ ∞ , where F is a continuous, centered Gaussian Theorem: in [0, ) F F C n process with covariance ≤ ≤ − α 2 ( ( ) ( ), ( ) ( )) P B s q s B t q t ρ = ( , ) . s t ( ( ), ) ( ( ), ) u q s s u q t t

  8. Outline ● Convergence of finite-dimensional distributions In particular, ρ defines a Gaussian process ● Properties of the limit process 1/4 Comparison with fBm, B H ∈ ⋅ is a centered Gaussian process (for fixed (0,1) , ( ) H B 2 2 = − = − H with (0) 0 and ( ) ( ) .) H H H B E B t B s t s Related work: [Harris, 1965], [Dürr, Goldstein, Lebowitz, 1985] ● Tightness ♦ Connect quantile to iid sums ♦ Estimate iid sums in terms of their parameters ♦ Estimate those parameters in terms of our specific model

  9. Outline ● Convergence of finite-dimensional distributions In particular, ρ defines a Gaussian process ● Properties of the limit process 1/4 Comparison with fBm, B H ∈ ⋅ is a centered Gaussian process (for fixed (0,1) , ( ) H B 2 2 = − = − H with (0) 0 and ( ) ( ) .) H H H B E B t B s t s Related work: [Harris, 1965], [Dürr, Goldstein, Lebowitz, 1985] ● Tightness ♦ Connect quantile to iid sums ♦ Estimate iid sums in terms of their parameters ♦ Estimate those parameters in terms of our specific model Done in generality, with future projects in mind.

  10. Potential future projects ● quantiles of diffusions (with Tom Kurtz) ● quantiles of general Gaussian processes fBm: limiting fluctuations of iid copies of B H /2 should behave locally like H . B

  11. Convergence of finite-dimensional distributions R -valued random variable = ( (1), (2), … , ( )) – d X X X X d α ∈ Φ = ≤ = ≤ ≤ ( ) ( ( ) ) , ( , ) ( ( ) , ( ) ) , fix (0,1) j x P X j x G x y P X i x X j y ij Assume ∃ = ∈ R such that Φ = α ( (1), (2), … , ( )) ( ( )) , d q q q q d j q j ′ Φ ( ( )) exists and is strictly positive, and G is continuous at ( ( ), ( )) . j q j q i q j ij { } – iid copies of X X n – component-wise order statistics of , , … , ; X X X X : 1 2 k n n i.e. : ( ) j is the k -th order statistic of ( ( ), ( ), … , ( )) X X j X j X j 1 2 k n n ( ) ( ) = α + − 1/2 1/2 − ⇒ Quantile CLT: If ( ) / , then , where k n n o n n X q N ( ): k n n N is mean zero, multi-normal, with covariance − α 2 ( ( ), ( )) G q i q j σ = = ( ) ( ) ij EN i N j ′ ′ Φ Φ ij ( ( )) ( ( )) q i q j i j

  12. Convergence of finite-dimensional distributions Φ = ≤ = ≤ ≤ ( ) ( ( ) ) , ( , ) ( ( ) , ( ) ) j x P X j x G x y P X i x X j y ij Φ = α Φ ′ > ( ( )) , ( ( )) 0 , G continuous at ( ( ), ( )) . j q j j q j q i q j ij { } – iid copies, : ( ) j – k -th order statistic of ( ( ), … , ( )) X X X j X j 1 n k n n ( ) ( ) = α + − 1/2 1/2 − ⇒ Quantile CLT: If ( ) / , then , where k n n o n n X q N ( ): k n n − α 2 ( ( ), ( )) G q i q j σ = = ( ) ( ) ij EN i N j Φ ′ Φ ′ ij ( ( )) ( ( )) q i q j i j ● Convergence of finite-dimensional distributions is an immediate corollary.

  13. Convergence of finite-dimensional distributions Φ = ≤ = ≤ ≤ ( ) ( ( ) ) , ( , ) ( ( ) , ( ) ) j x P X j x G x y P X i x X j y ij Φ = α Φ ′ > ( ( )) , ( ( )) 0 , G continuous at ( ( ), ( )) . j q j j q j q i q j ij { } – iid copies, : ( ) j – k -th order statistic of ( ( ), … , ( )) X X X j X j 1 n k n n ( ) ( ) = α + − 1/2 1/2 − ⇒ Quantile CLT: If ( ) / , then , where k n n o n n X q N ( ): k n n − α 2 ( ( ), ( )) G q i q j σ = = ( ) ( ) ij EN i N j Φ ′ Φ ′ ij ( ( )) ( ( )) q i q j i j x y ∈ R , x ≤ ≤ Proof sketch: For , d iff ( ) ( ) for all j . y x j y j ( ) ( ) ( ) − 1/2 1/2 − ≤ = ≤ + ∀ ( ) ( ) ( ), P n X q x P X j n x j q j j ( ): ( ): k n n k n n ⎛ ⎞ n ∑ = ≥ ∀ ⎜ ⎟ 1 ( ), P { } k n j ⎜ ⎟ ≤ − 1/2 + ( ) ( ) ( ) X j n x j q j ⎝ ⎠ m = 1 m ⎛ ⎞ n ∑ − ( ) 1/2 = ≥ − ∀ ⎜ ( ) ( ) ( ) , ⎟ P Y j n k n np j j ⎜ , ⎟ m n n ⎝ ⎠ = 1 m

  14. Convergence of finite-dimensional distributions ⎛ ⎞ ( ) ( ) n ∑ ( ) − ≤ = ≥ − − ∀ 1/2 1/2 ( ) ( ) ( ) , , P n X q x P ⎜ Y j n k n np j j ⎟ ( ): , k n n m n n ⎝ ⎠ = 1 m where ( ) − 1/2 = ≤ + ( ) ( ) ( ) ( ) p j P X j n x j q j n ( ) − 1/2 = − ( ) 1 ( ) . { } Y j n p j , ≤ − + ( ) 1/2 ( ) ( ) m n n X j n x j q j m ∑ � , centered normal with n ⇒ Lindeberg-Feller: m Y N , = m n 1 � � = − α 2 ( ) ( ) ( ( ), ( )) . EN i N j G q i q j ij

  15. Convergence of finite-dimensional distributions ⎛ ⎞ ( ) ( ) n ∑ ( ) − 1/2 − ≤ = ≥ 1/2 − ∀ ( ) ( ) ( ) , , P n X q x P ⎜ Y j n k n np j j ⎟ ( ): , k n n m n n ⎝ ⎠ = 1 m ∑ � , � � n ⇒ = − α 2 ( ) ( ) ( ( ), ( )) . m Y N EN i N j G q i q j , = 1 m n ij ( ) ( ) − − = − 1/2 1/2 ( ) ( ) ( ) / ( ) n k n np j n k n n p j n n ( ) = α − + 1/2 ( ) (1) n p j o n − Φ − Φ 1/2 + ( ( )) ( ( ) ( )) q j n x j q j = + j j (1) o − 1/2 n ′ → − Φ ( ) ( ( )) x j q j j Hence, ( ) ( ) ( ) ( ) � ′ 1/2 − ≤ → − Φ ≤ ∀ = ≤ ( ) / ( ( )) ( ), . � P n X q x P N j q j x j j P N x ( ): k n n j

  16. Properties of the limit process ≤ ≤ − α 2 ( ( ) ( ), ( ) ( )) P B s q s B t q t ρ = ( , ) s t ( ( ), ) ( ( ), ) u q s s u q t t T > , ∃ δ > < < ≤ Theorem: For each 0 , , 0 such that for all 0 , C C s t T 0 1 2 − 1/2 − 1/2 − ≤ ∂ ρ ≤ − (i) ( , ) C t s s t C t s 1 2 s − − 1/2 1/2 − − ≤ ∂ ρ ≤ − − (ii) ( , ) C t s s t C t s 2 1 t − − 3/2 3/2 − − ≤ ∂ 2 ρ ≤ − − (iii) ( , ) C t s s t C t s 2 1 st − < δ whenever . t s 0 � = Heuristic: Define ( ) ( ( ), ) ( ) . F t u q t t F t ρ � = ≤ ≤ − α 2 ( , ) ( ( ) ( ), ( ) ( )) s t P B s q s B t q t

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend