flexibility of the blrm in dose escalation trials
play

Flexibility of the BLRM in Dose-Escalation Trials Ursula Garczarek - PowerPoint PPT Presentation

Shaping the Future of Drug Development Flexibility of the BLRM in Dose-Escalation Trials Ursula Garczarek Cytel Inc. | Hagen (DE) Overview Bayes logistic regression model (BLRM) Why people use B LRM Application for Dose-Escalation


  1. Shaping the Future of Drug Development Flexibility of the BLRM in Dose-Escalation Trials Ursula Garczarek Cytel Inc. | Hagen (DE)

  2. Overview • Bayes logistic regression model (BLRM) • Why people use B LRM • Application for Dose-Escalation trials and demonstration of flexibility – Requirements – Prior elicitation – Extensions of the basic model Arbeitstagung IBS-DR & DVFFA, Hannover 2

  3. Bayesian Logistic Regression Model (BLRM) General Model – Experimental units: n=1,...,N – Y n := 0,1 binary outcome, – X n1 ,...,X nJ := predictors per experimental unit – X n1 ,...,X nJ may come from inputs Z nk , k=1,...,K, K<J 1 = 1 + exp −� � − ∑ ß � � � � � � = 1 �, ß exp � � + ∑ ß � � � � = 1 + exp +� � + ∑ ß � � � � � log 1 − � = � � + � ß � � � � Arbeitstagung IBS-DR & DVFFA, Hannover 3

  4. Why do people use BLRM? • Variable selection 0.125 0.100 0.075 y – E.g. Multimarker diagnostics (Lasso,ML) 0.050 0.025 -10 -5 0 5 10 • Coping with sparse data x 0.125 0.100 – E.g. Analysing adverse events (MBLRM), 0.075 y 0.050 Epidemiology, Genetics,... 0.025 -10 -5 0 5 10 x • Coping with missing values/information – E.g. presence-only data 0.10 y • Adaptive experimentation 0.05 0.00 -10 -5 0 5 10 – Dose escalation  x Arbeitstagung IBS-DR & DVFFA, Hannover 4

  5. Dose-Escalation Trials Phase I • Assess dose-toxicity relationship First-in-human studies • • Observe Dose limiting toxicities (DLTs) • Determine maximum tolerated dose (MTD) or recommended phase II dose (RP2D) • MTD := highest dose with toxicity rate lower (or close to) a fixed rate e.g 30% • Formally: • Experimental Units: Patients/Healthy volunteers • Binary outcome: experience of a DLT yes/no • Other characteristic: controlled drug dose Arbeitstagung IBS-DR & DVFFA, Hannover 5

  6. Dose-Escalation Trials Phase I • An sequence of increasing doses d 1 ,d 2 ,…,d J Often: „modified“ 60 40 d Fibonacci: 20 0 0 5 10 seq • Dose d j has an unknown toxicity probability π j • Monotonicity : π j < π j+1 • Goal : Find MTD – π MTD <=0.3, π D>MTD >0.3 Arbeitstagung IBS-DR & DVFFA, Hannover 6

  7. Design requirements Challenge Design Requirement Untested drug in resistant patients Escalating dose cohorts with small #s patients (e.g. 3-6 patients) Primary objective: determine MTD Accurately estimate MTD High toxicity potential: safety first Robustly avoid toxic doses („overdosing“) Most responses occur 80%-120% of MTD* Avoid sub-therapeutic doses while controlling overdosing Find best dose for dose expansion Enroll more patients at acceptable** active doses (flexible cohort sizes) Complete trial in timely fashion Use available information efficiently High toxicity potential: safety first Medical experts are in control Table rows 1-7 from: Satrajit Roychoudhury, Novartis, https://www.slideshare.net/JamesCahill3/eugm-2014-roychaudhuri-phase-1-combination * Joffe and Miller 2008 JCO ** Less than or equal to the MTD determined on study Arbeitstagung IBS-DR & DVFFA, Hannover 7

  8. The 3+3 design (schematic) Image from Hansen et al 2014. Arbeitstagung IBS-DR & DVFFA, Hannover 8

  9. Limitations of 3+3 • Fixed cohort sizes (either 3 or 6) • Pre-defined dose levels to be potentially tested • Ignores dosage history other than previous cohort • Ignores uncertainty: – True DLT rate p=0.5 -> 11% chance of 0 or 1 DLT in 6 patients – True DLT rate p=0.166, 26% chance of >=2 DLT in 6 patients • Cannot re-escalate • Low probability of selecting true MTD (e.g. Thall and Lee. 2003) • High variability in MTD estimates (Goodman et al. 1995) Alessandro Matano, Novartis, http://www.smi-online.co.uk/pharmaceuticals/archive/4-2013/conference/adaptive-designs Arbeitstagung IBS-DR & DVFFA, Hannover 9

  10. Design requirements Challenge Design Requirement Untested drug in resistant patients Escalating dose cohorts with small #s patients (e.g. 3-6 patients) Primary objective: determine MTD Accurately estimate MTD High toxicity potential: safety first Robustly avoid toxic doses („overdosing“) Most responses occur 80%-120% of MTD* Avoid sub-therapeutic doses while controlling overdosing Find best dose for dose expansion Enroll more patients at acceptable** active doses (flexible cohort sizes) Complete trial in timely fashion Use available information efficiently High toxicity potential: safety first Medical experts are in control Table rows 1-7 from: Alessandro Matano, Novartis, http://www.smi-online.co.uk/pharmaceuticals/archive/4-2013/conference/adaptive-designs * Joffe and Miller 2008 JCO ** Less than or equal to the MTD determined on study Arbeitstagung IBS-DR & DVFFA, Hannover 10

  11. Alternatives to 3+3 Arbeitstagung IBS-DR & DVFFA, Hannover 11 Image from Hansen et al 2014.

  12. Why Bayesian in Dose-Escalation Bayesian solution Design Requirement Information can be updated for as small Escalating dose cohorts with small #s and larger groups as one wants patients (e.g. 3-6 patients) Assessable by posterior Accurately estimate MTD Choose next dose based on posterior Robustly avoid toxic doses („overdosing“) Choose next dose based on posterior Avoid sub-therapeutic doses while controlling overdosing Choose next dose based on posterior Enroll more patients at acceptable** active doses (flexible cohort sizes) All information is used + „prior“ Use available information efficiently High toxicity potential: safety first Medical experts are in control Arbeitstagung IBS-DR & DVFFA, Hannover 12

  13. Theoretical and Practical Loss „function“ Dose escalation � d| θ ∈ (0,0.2] � 1 = 1 ����� − � !"�# � d| θ ∈ (0.2,0.35] � 2 = 0 %&�#�%�� % ' L θ, � = � d| θ ∈ (0.35,0.6] � 3 = 1 �'(�!!")� % ' Algorithm � d| θ ∈ (0.6,0.1] � 4 = 2 ��&((��%&+�� % ' in control Interval Probabilities by Dose Interval Probabilities by Dose 1 0.5 0.26 0.24 0.22 Unacceptable 0.16 0.11 0.06 0 0 0 0 0 0 0 0 1 0.8 0.6 Medical 0.4 Excessive Probability 0.16 0.18 0.15 0.16 0.15 0.1 0.12 0.2 0.04 0.01 0.02 0.01 0.01 0.01 0 experts in 1 0.8 0.6 Target control 0.4 0.25 0.24 0.2 0.21 0.19 0.19 0.18 0.18 0.13 0.11 0.2 0.08 0.05 0.06 0 0.94 0.93 0.92 1 0.88 0.86 0.78 x 0.65 0.58 x x x x 0.53 x Under dosing 0.49 x 0.44 0.42 0.5 0.37 x 0 1 2 3.3 5.1 6.6 8.8 11.8 15.6 20.8 27.8 36.8 49 65.2 Dose Pr(Under dosing) Pr(Target) Pr(Excessive) Pr(Unacceptable) Arbeitstagung IBS-DR & DVFFA, Hannover 13

  14. Bayesian Logistic Regression Model Flex 1: Meaningful parametrization • Data: – #DLT/#Patients: r d ~Binomial( π d ,n d ) • Parameter Model: – logit( π d )=log( α )+ß(log(d/d*)) • Prior: – (log( α ),log(ß)) ~ N 2 ( µ 1 , µ 2 , σ 1 , σ 2 , ρ ) Model parameters α and ß can be interpreted as: α: odds of a DLT at d*(reference dose) ß >0: increase log-odds of DLT by unit increase log dose Satrajit Roychoudhury, Novartis, https://www.slideshare.net/JamesCahill3/eugm-2014-roychaudhuri-phase-1-combination Arbeitstagung IBS-DR & DVFFA, Hannover 14

  15. BLRM Flex 2: Plausible functional shapes 1.00 0.60 π 0.35 0.30 0.09 0.00 1.0 2.03.3 5.16.6 8.8 11.8 15.6 20.8 27.8 36.8 49.0 65.2 d Arbeitstagung IBS-DR & DVFFA, Hannover 15

  16. BLRM Flex 2: Plausible functional shapes 1.00 Prior information d*=11.8 Odds: 0.1 0.60 π 0.35 0.30 0.09 0.00 1.0 2.03.3 5.16.6 8.8 11.8 15.6 20.8 27.8 36.8 49.0 65.2 d Arbeitstagung IBS-DR & DVFFA, Hannover 16

  17. BLRM Flex 2: Plausible functional shapes 1.00 linetype ß=0.1 ß=0.5 0.60 ß=1 ß=2 π colour ß=0.1 ß=0.5 0.35 ß=1 0.30 ß=2 0.09 0.00 1.0 2.0 3.3 5.16.6 8.8 11.8 15.6 20.8 27.8 36.8 49.0 65.2 d Arbeitstagung IBS-DR & DVFFA, Hannover 17

  18. BLRM Flex 3=1+2: Prior elicitation There has to be knowledge on lowest dose and on dose range 1. Minimal informative 2. Somewhat informative • P( π d1 <=0.6 ) = 0.95 • P( π d1 <=0.05 ) = 0.5 – B (1,log(0.05/0.4)) – B (1,log(0.05/0.5)) • P( π dJ <=0.2 ) = 0.05 • P( π MTD <=0.3 ) = 0.5 – B (log(0.05/0.2),1) – B (log(0.3/0.5),1)  Prior medians for the other  Prior medians for the other doses by basic model doses by basic model – B (a,b),j=2,...,J-1 – B (a,b),j=2,...,J without d=MTD  Best approximating  Best approximating N 2 ( µ 1 , µ 2 , σ 1 , σ 2 , ρ ) N 2 ( µ 1 , µ 2 , σ 1 , σ 2 , ρ ) Arbeitstagung IBS-DR & DVFFA, Hannover 18

  19. Dose-Escalation Trials Phase I Assess dose-toxicity relationship • • First-in-human (FIH) studies – single agent Determine maximum tolerated dose (MTD) or • recommended phase II dose (RP2D) • Observe Dose limiting toxicities (DLTs) • Combination dose finding studies (Phase Ib) • Same primary objective as FIH studies • Combination of two (or more) drugs • Addition of a new drug to a registered treatment to increase efficacy http://www.bayes-pharma.org/bayes2014docs/Day1/Jullion.pdf Arbeitstagung IBS-DR & DVFFA, Hannover 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend