flash
play

FLASH FreeElectron Laser in Hamburg BeamBeam2013 : CERN - PowerPoint PPT Presentation

BeamBeam2013 : CERN 19.03.2013/ M.Vogt DESY-MFL : Analytic & Simulation Tools 1 ICFA BeamBeam Workshop CERN 2013 Analytical and Numerical Tools for BeamBeam Studies Mathias Vogt (DESYMFL) Intro WeakStrong BeamBeam


  1. BeamBeam–2013 : CERN 19.03.2013/ M.Vogt DESY-MFL : Analytic & Simulation Tools 1 ICFA Beam–Beam Workshop CERN 2013 Analytical and Numerical Tools for Beam–Beam Studies Mathias Vogt (DESY–MFL) • Intro • Weak–Strong Beam–Beam (WSBB) • A little bit on WSBB codes • Strong–Strong Beam–Beam (SSBB) • A little bit on SSBB codes . . . not necessarily in that strict order! FLASH Free−Electron Laser in Hamburg

  2. BeamBeam–2013 : CERN 19.03.2013/ M.Vogt DESY-MFL : Analytic & Simulation Tools 2 Beam Beam Models (Basics) Immanent symmetry: “beam” ↔ “other beam” ⇒ “other beam” =: “beam ⋆ ” We don’t need the ⋆ to indicate IP–properties: “at-the-IP” is the default for beam–beam–stuff!! z ∈ R 2 n , n = 1 , 2 , 3 • Phase space: � • include long. phase space ( τ, δ ) ⇒ potential crossing angle { z i } i =1 ,..., 6 → → x, ( a := p x /p 0 ) , y, ( b := p y /p 0 ) , τ, δ . . . and more fun with beam–waists! • Indep. var. θ := 2 πs/C • Note of course : Hamiltonian ⋆ : H ⋆ = H 0 ⋆ + � N IP i =1 a 2 π⋆ ( θ − θ i ) H bb ⋆ • Hamiltonian: i H = H 0 + � N IP i =1 a 2 π ( θ − θ i ) H bb • H bb can be head–on or long–range i i • a 2 π ( θ ) = a 2 π ( θ + 2 π ) = (a.k.a. “parasitic” ) � δ 2 π ( θ ) : σ τ ≪ β x,y can be weak–strong (beam ⋆ fixed • H bb i loc. hump around 0 : otherwise from turn-to-turn) • H bb • a 2 π → δ 2 π ⇒ can be strong–strong (beam ⋆ i H bb → U bb (kick–potential) changes from turn-to-turn due to beam) i i • extended a 2 π : H bb = T free − space + U bb • Some collision schemes (RHIC, Teva- i i tron, LHC! ) need to consider more ← beam–waist → Hourglass–Effect than 1 bunch per beam!

  3. BeamBeam–2013 : CERN 19.03.2013/ M.Vogt DESY-MFL : Analytic & Simulation Tools 3 Beam Beam Models (“Time”–Continuous) For the moment : only one short bunch per beam and head–on w/o crossing angle , only one IP. • Phase space densities : → so, why not skip the trajectories ?! z , θ ) & Ψ ⋆ ( � Ψ( � z , θ ) ∂ t Ψ = { H [Ψ ⋆ ] , Ψ } z Ψ) T J ( ∂ � z H [Ψ ⋆ ]) ≡ ( ∂ � • SSBB (the real thing!) : ∂ t Ψ ⋆ = { H [Ψ] , Ψ ⋆ } z Ψ ⋆ ) T J ( ∂ � ≡ ( ∂ � z H [Ψ]) dependence of H ( H ⋆ ) on Ψ ⋆ ( Ψ ) : → SSBB coupled Vlasov–Poisson eq’s H [Ψ ⋆ ] = H 0 + U ss [Ψ ⋆ ] → coupled system of 2 non–linear H ⋆ [Ψ] = H 0 ⋆ + U ss ⋆ [Ψ] 1-st order PIDEs � p , θ ) d n p • via ρ ( � q , θ ) := Ψ( � q , � → Can treat coherent (and incoherent) mo- & ρ ⋆ ( � � Ψ ⋆ ( � p , θ ) d n p q , θ ) := q , � tion and collective interactions � • U ss [Ψ ⋆ ]( � q ′ ) ρ ⋆ ( � q ′ ) d n q ′ , q ) ∝ G ( � q − � • WSBB : Ψ ⋆ given & fixed ∀ turns G : Green’s function → study only � z ( θ ) (and/or Ψ( � z , θ ) ) z ⋆ ( θ ) ⇒ Evolution of trajectories � z ( θ ) , � → U ws ( q ) ≡ U ss [Ψ ⋆ fixed ]( q ) needs up to date densities Ψ , Ψ ⋆ d z H ws ( � • dθ � z = J ∂ � z , θ ) ← Can. eq’s (both!) : ( J : symplectic structure) • ∂ t Ψ = { H ws , Ψ } ← Liouville eq. d z H [Ψ ⋆ ]( � dθ � z = J ∂ � z , θ ) → linear 1-st order PDE d z ⋆ = J ∂ � z H ⋆ [Ψ]( � z ⋆ , θ ) dθ � → Can NOT treat collective effects.

  4. BeamBeam–2013 : CERN 19.03.2013/ M.Vogt DESY-MFL : Analytic & Simulation Tools 4 Beam Beam Models (“Time”–Discrete WSBB ) • WSBB : → linear(!) Perron–Frobenius Operator d • dθ � z = J ∂ � z H ( � z , θ ) M : Ψ �→ Ψ ◦ � M − 1 ← Hamiltonian Vectorfield • Discrete “time” maps : z ( θ f ) ≡ � ⇒ � z ( θ i ) �→ � M θ f ,θ i ( � z ( θ i )) restrict θ to discrete set { θ j } j =1 ,... ← Symplectic Flow � z j := � z ( θ j ) , Ψ j ( � z ) := Ψ( � z , θ j ) z 0 ) := ∂ � z 0 ∈ R 2 n M ( � M θ f ,θ i ( � z 0 ) ∈ Sp (2 n ) ∀ � � z ) := � M f,i ( � M θ f ,θ i ( � z ) M θ,θ = � � Id (identity) and forget about θ ∈ R . . . ⇒ Measure Preserving Flow : • OneTurnMap (OTM, monodromy map) µ Ψ ( A ) = µ Ψ ( � M ( A )) ∀A ∈ B 2 n � z ) := � T j ( � M θ j +2 π,θ j ( � z ) i.a.w.: Ψ = const . along trajectories • Since Sp (2 n ) is connected, all sym- ← this is why Liouville eq. holds! plectic C 1 maps are connected to � Id → Meth. o. Characteristics / P.F.–Meth. (identity) and thus can all be a flow. Ψ( � z , θ ) at point � z and “time” θ is given ⇒ extra freedom : use effective maps by Ψ( � M − 1 θ,θ 0 ( � z ) , θ 0 ) at an earlier “time” from θ i to θ f w/o caring what hap- θ 0 and the backward tracked point pens in–between! � z ) ≡ � M − 1 θ,θ 0 ( � M θ 0 ,θ ( � z )

  5. BeamBeam–2013 : CERN 19.03.2013/ M.Vogt DESY-MFL : Analytic & Simulation Tools 5 Beam Beam Models (“Time”–Discrete SSBB) • from WSBB: Ψ f ( � z ) = ( M f,i Ψ i ) ( � z ) T [Ψ ⋆ ] − 1 = � K [Ψ ⋆ ] − 1 ◦ � ⇒ � L − 1 (inv. OTM) � � Ψ i ◦ � z ) = Ψ i ( � M − 1 = ( � M i,f ( � z )) f,i ⇒ T [Ψ ⋆ ] : Ψ �→ Ψ ◦ � T [Ψ ⋆ ] − 1 (P.F.) • SSBB : ⇒ Evolution from n -th turn to ( n +1) -st : • For every given decent ψ ( ∈ L 1 & normal- � K [Ψ ⋆n ] − 1 � �� � � L − 1 ( � Ψ n +1 ( � z ) =Ψ n z ) ized) J∂ � z H [ ψ ] is a perfectly Hamil- tonian V.F. and defines the perfectly � K [Ψ n ] − 1 � �� � � Ψ ⋆n +1 ( � z )=Ψ ⋆n L − 1 ( � z ) Symplectic Flow � M [ ψ ] • Extension to more IPs straight forward! ⇒ Thus (at least) the following model is • Example : HERA with “hadronic leptons” perfectly well defined: → needs only one bunch per beam • BB–Kick & Lattice (One IP) : 2 × 2 arcs: � L eW , � L eE , � L pW , � L pE • � T [Ψ ⋆ ] := � L ◦ � K [Ψ ⋆ ] 2 × 2 bb–kicks: � � � � q � � q � K e [Ψ p,N ] , � � K e [Ψ p,S ] , � K p [Ψ e,N ] , � K [Ψ ⋆ ] := K p [Ψ e,S ] �→ q U [ ρ ⋆ ]( � p � p − ∂ � � q ) � L represents the lattice w/o collective effects

  6. BeamBeam–2013 : CERN 19.03.2013/ M.Vogt DESY-MFL : Analytic & Simulation Tools 6 “Time”–Discrete SSBB : HERA–Example • 2 × 2 arcs: � L eW , � L eE , � L pW , � L pE ( e ± , p ) × (West, East) • 2 × 2 bb–kicks: � K e [Ψ p,N ] , � K e [Ψ p,S ] , � K p [Ψ e,N ] , � K p [Ψ e,S ] ( e ± , p ) × (North, South) • Evolution of Ψ e and Ψ p over 2 n half turns : L eO − 1 L pW − 1 ◦ � n ] ◦ � ◦ � n ] ◦ � 1:N → S: Ψ e,S = Ψ e,N K e − 1 [Ψ p,N Ψ p,S = Ψ p,N K p − 1 [Ψ e,N n n n n L eW − 1 L pO − 1 ◦ � n ] ◦ � ◦ � n ] ◦ � 2:S → N: Ψ e,N Ψ p,N n +1 = Ψ e,S K e − 1 [Ψ p,S n +1 = Ψ p,S K p − 1 [Ψ e,S n n N ⇒ No fundamental difference between 2 IPs and 1 IP [Ψ ] N K [Ψ ] N K e p p e ⇒ Just more intricate dependence on M p E M W p the lattice parameters E W E M e M e W • There’s more complicated examples: RHIC, Tevatron, LHC!!! K [Ψ ] e [Ψ ] S S K • Also: approximate extended BB p e p waists with (kick → drift → ) k , k > 1 . S

  7. BeamBeam–2013 : CERN 19.03.2013/ M.Vogt DESY-MFL : Analytic & Simulation Tools 7 The Rigid Bunch Model (RBM) . . . just for completeness: the Rigid Bunch Model (RBM) : • Quick and dirty: only centroid motion • However, well suited for first multi ( = N ) bunch & multi ( = M ) IP analysis : • One “macro particle” � z i per bunch i and WS–like interaction potential for crossing q i − � of i –th and j –th bunch at l -th IP U l ( � q j ) • Further simplification : linearization, no long. & uncoupled, kick → study ( x, a ) and ( y, b ) plane separately � � � � 1 0 0 ⇒ e.g. � z ⋆ ]( � z ⋆ ) K l [ � z ) = � z + and vice versa ( � z ↔ � + κ l q ⋆ − κ l 1 • Now glue together: bunches � Z := � z 1 ⊕ � z 2 ⊕ . . . ⊕ � z N , sections of lattice N and join with IPs K l (bunch-to-bunch coupling) M l := L 1 l ⊕ L 2 l ⊕ . . . ⊕ L l → linear stability analysis of 2 N × 2 N OTM T := K 1 M 1 . . . K M M M

  8. BeamBeam–2013 : CERN 19.03.2013/ M.Vogt DESY-MFL : Analytic & Simulation Tools 8 The Absolutely Most Famous Results from Linear WSBB :-) • unperturbed linear OTM seen from IP ( α = 0 ): � � cos(2 πQ 0 ) β 0 sin(2 πQ 0 ) • T 0 := − sin(2 πQ 0 ) /β 0 cos(2 πQ 0 ) � � 1 0 • insert linear (focusing) WSBB kick K := before IP − κ 1 κ x,y = 2 N ⋆ r p ( σ ⋆x,y ( σ ⋆x + σ ⋆y )) − 1 • with κ from γ � � cos(2 πQ 0 ) − β 0 sin(2 πQ 0 ) κ β 0 sin(2 πQ 0 ) ⇒ T := T 0 K = − sin(2 πQ 0 ) /β 0 − cos(2 πQ 0 ) κ cos(2 πQ 0 ) 2 trace T = cos(2 πQ 0 ) − β 0 κ ⇒ cos(2 πQ ) = 1 2 cos(2 πQ 0 ) ⇒ Perturbed tune Q = Q 0 + β 0 κ 4 π + O ( κ 2 ) ξ := β 0 κ • Linear Beam–Beam Tuneshift Parameter 4 π

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend