fixed delay joint source channel coding for finite memory
play

Fixed Delay Joint Source Channel Coding for Finite Memory Systems - PowerPoint PPT Presentation

Fixed Delay Joint Source Channel Coding for Finite Memory Systems Aditya Mahajan and Demosthenis Teneketzis Dept. of EECS , University of Michigan, Ann Arbor, MI48109 ISIT 2006July 13, 2006 Fixed Delay & Fixed Complexity Motivation


  1. Fixed Delay Joint Source Channel Coding for Finite Memory Systems Aditya Mahajan and Demosthenis Teneketzis Dept. of EECS , University of Michigan, Ann Arbor, MI–48109 ISIT 2006–July 13, 2006

  2. Fixed Delay & Fixed Complexity

  3. Motivation I • Classical Information Theory does not take delay and com- plexity into account. S I • Why consider delay and complexity? T • Delay: 2 − QoS (end--to--end delay) in communication networks 0 − Control over communication channels. 0 − Decentralized detection in sensor networks. 6 • Complexity: (size of lookup table) − cost − power consumption 1 Mahajan Teneketzis: Fixed Delay Joint Source Channel Coding

  4. Finite Delay Communication I • Separation Theorem: distortion d is feasible is S Rate Distortion of Source < Channel Capacity I R ( d ) < C T • For finite delay system Separation Theorem does not hold. 2 0 • What is equivalent of rate distortion and channel capacity? 0 • Find a metric to check whether distortion level d is feasible 6 or not. • Metric will depend on the source and the channel. 2 Mahajan Teneketzis: Fixed Delay Joint Source Channel Coding

  5. Problem Formulation I Objective S Evaluate optimal performance R − 1 ( C ) for the simplest non-- I trivial system T − Markov Source 2 − memoryless noisy channel 0 − additive distortion 0 Constraints 6 − Use stationary encoding and decoding schemes. − Fixed memory available at the encoder and the decoder. 3 Mahajan Teneketzis: Fixed Delay Joint Source Channel Coding

  6. Model I • Markov Source: S − Source Output { X 1 , X 2 , . . . } , X n ∈ X . I − Transition probability matrix P T • Finite State Encoder: 2 − Input X n , State S n , Output Z n 0 Z n = f ( X n , S n − 1 ) , Z n ∈ Z 0 S n = h ( X n , S n − 1 ) , S n ∈ S 6 • Memoryless Channel: � � Z n , Y n − 1 � � = Pr ( Y n | Z n ) = Q ( Y n , Z n ) Pr Y n 4 Mahajan Teneketzis: Fixed Delay Joint Source Channel Coding

  7. Model I • Finite State Decoder: S − Input Y n , State M n , Output � X n I T � � X n = g ( Y n , M n − 1 ) , X n ∈ X M n = h ( Y n , M n − 1 ) , M n ∈ M 2 0 • Distortion Metric: 0 ρ : X × X → [ 0, K ] , K < ∞ 6 • D step delay ρ ( X n − D , � X n ) 5 Mahajan Teneketzis: Fixed Delay Joint Source Channel Coding

  8. Problem Formulation I S n − 1 M n − 1 � S X n Z n Y n X n Markov Finite State Memoryless Finite State Source Encoder Channel Decoder I P f, h Q g, l T Problem (P1) 2 Given source ( X , P ) , channel ( Z , Y , Q ) , memory ( S , M ) and dis- 0 tortion ( ρ, D ) , determine encoder ( f, h ) and decoder ( g, l ) so as 0 to minimize 6 � � N � � � � 1 � � X n − D , � J ( f, h, g, l ) � lim sup E ρ X n � f, h, g, l � � N N →∞ n = D + 1 where � N = N − D + 1 6 Mahajan Teneketzis: Fixed Delay Joint Source Channel Coding

  9. Literature Overview I • Transmitting Markovian source through finite--state ma- chines as encoders and decoders. S I • Problem considered by Gaarder and Slepian in mid 70 ’s. T • N. T. Gaarder and D. Slepain 2 On optimal finite--state digital communication systems, ISIT , Grignano, Italy, 1979 0 TIT , vol. 28 , no. 2 , pp. 167 – 186 , 1982 . 0 6 7 Mahajan Teneketzis: Fixed Delay Joint Source Channel Coding

  10. Our Approach I • Start with a simpler (to analyze) problem − Finite horizon − time--varying design S − zero delay I T • dynamic team problem—solved using Stochastic Optimiza- tion Techniques 2 • finite delay problem 0 • infinite horizon problem 0 6 • Find conditions under which time invariant (stationary) de- signs are optimal. • Low complexity algorithms to obtain optimal performance and optimal design. 8 Mahajan Teneketzis: Fixed Delay Joint Source Channel Coding

  11. Finite Horizon Problem

  12. Finite Horizon Case — Model I • Encoder and Tx Memory Update S Z n = f n ( X n , S n − 1 ) f � ( f 1 , . . . , f N ) I S n = h n ( X n , S n − 1 ) h � ( h 1 , . . . , h N ) T • Decoder and Rx Memory Update 2 � X n = g n ( Y n , M n − 1 ) g � ( g 1 , . . . , g N ) 0 M n = l n ( Y n , M n − 1 ) l � ( l 1 , . . . , l N ) 0 6 • Delay D = 0 9 Mahajan Teneketzis: Fixed Delay Joint Source Channel Coding

  13. Finite Horizon Problem Formulation I S n − 1 M n − 1 � S Markov X n Finite State Z n Memoryless Y n Finite State X n Source Encoder Channel Decoder I P f, h Q g, l T Problem (P2) 2 Given source ( X , P ) , channel ( Z , Y , Q ) , memory ( S , M ) , distor- 0 tion ( ρ, D = 0 ) and horizon N , determine encoder ( f, h ) and 0 decoder ( g, l ) so as to minimize � 6 � � N � � � � � X n , � J N ( f, h, g, l ) � E ρ X n � f, h, g, l � n = 1 where f � ( f 1 , . . . , f N ) , and so on for h, g, l . 10 Mahajan Teneketzis: Fixed Delay Joint Source Channel Coding

  14. Solution Concept in Seq. Stoch. Opt I • One Step Optimization � S � � N � � � ρ ( X n , � � f N , h N , g N , l N I X n ) min E � f 1 ,f 2 ,...,f N T n = 1 h 1 ,h 2 ,...,h N g 1 ,g 2 ,...,g N l 1 ,l 2 ,...,l N 2 • 4N Step Optimization—Sequential Decomposition 0 0 � � � � min min min min · · · g 1 6 f 1 l 1 h 1 � � ���� � � � �� · · · min min min min · · · f N g N l N h N 11 Mahajan Teneketzis: Fixed Delay Joint Source Channel Coding

  15. Dynamic Team Problems I • Team Decision Theory: distributed agents with common objective S I − Marshak and Radner T − Witsenhausen 2 • Decentralized of information—encoder and decoder have different view of the world. 0 0 • Non--classical information pattern 6 • Non--convex functional optimization problem • Most important step is identifying information state 12 Mahajan Teneketzis: Fixed Delay Joint Source Channel Coding

  16. Information State If ϕ n − 1 is the information state at n − (and γ = ( f, h, g, l ) ) I S • State in the sense of I T n − 1 ( γ n ) T n ( γ n + 1 ) − → ϕ n − 1 − − − − − − → ϕ n − − − − − − → ϕ n + 1 − → T • Absorbs the effect of past decision rules on future perfor- 2 mance. 0 � � � N � 0 � � ρ ( X i , � � γ N E X i ) � 1 6 i = n � � � N � � � ρ ( X i , � � π 0 n − 1 , γ N = E X i ) � n i = n 13 Mahajan Teneketzis: Fixed Delay Joint Source Channel Coding

  17. Find an information state for Problem (P2)

  18. Find an information state for Problem (P2) Guess & Verify

  19. Information State for (P2) I • Definition S π 1 n � Pr ( X n , Y n , S n − 1 , M n − 1 ) I π 2 n � Pr ( X n , S n − 1 , M n ) T π 0 n � Pr ( X n , M n ) S n , 2 0 0 6 14 Mahajan Teneketzis: Fixed Delay Joint Source Channel Coding

  20. Information State for (P2) I • Definition S π 1 n � Pr ( X n , Y n , S n − 1 , M n − 1 ) I π 2 n � Pr ( X n , S n − 1 , M n ) T π 0 n � Pr ( X n , S n , M n ) 2 Lemma 0 0 For all n = 1, . . . , N , 6 there exist linear transforms T 0 , T 1 , T 2 such that • T 0 n − 1 ( f n ) T 1 T 2 n ( l n ) n ( h n ) → π 0 → π 1 → π 2 → π 0 − − − − − − − − − − − − − − − − − n − → n − 1 n n 14 Mahajan Teneketzis: Fixed Delay Joint Source Channel Coding

  21. Information State for (P2) I • Definition S π 1 n � Pr ( X n , Y n , S n − 1 , M n − 1 ) I π 2 n � Pr ( X n , S n − 1 , M n ) T π 0 n � Pr ( X n , M n ) S n , 2 Lemma (cont. . .) 0 0 For all n = 1, . . . , N , 6 • the expected instantaneous cost can be written as � � � � f n , h n , g n , l n � ρ ( X n , � ρ ( π 1 = � E X n ) n , g n ) 14 Mahajan Teneketzis: Fixed Delay Joint Source Channel Coding

  22. Solution of (P2) I Dynamic Program S • For n = 1, . . . , N I � � � T V 0 n − 1 ( π 0 V 1 T 0 ( f n ) π 0 � n − 1 ) = min , n n − 1 f n � � � V 1 n ( π 1 n ) = V n ( π 1 � V 2 T 1 ( l n ) π 1 2 n ) + min , n n l n 0 V n ( π 1 ρ ( π 1 � � � n ) = min n , g n ) , 0 g n � � � 6 V 2 n ( π 2 � V 0 T 2 ( h n ) π 2 n ) = min , n n h n and V 0 N ( π 0 N ) � 0. 15 Mahajan Teneketzis: Fixed Delay Joint Source Channel Coding

  23. Solution of (P2) I • The arg min at each step determines the corresponding op- timal design rule. S I • The optimal performance is given by T N = V 0 0 ( π 0 J ∗ 0 ) 2 • Computations: Numerical methods from Markov decision 0 theory can be used. 0 6 16 Mahajan Teneketzis: Fixed Delay Joint Source Channel Coding

  24. Next steps . . .

  25. Finite Delay Problem I • Delay D � = 0 S • Sliding window transformation of the source I T X n = ( X n − D , . . . , X n ) ρ ( X n , � X n ) = ρ ( X n − D , � X n ) 2 0 • Reduces to problem (P2). 0 6 17 Mahajan Teneketzis: Fixed Delay Joint Source Channel Coding

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend