first gamma ray spectroscopy of

First Gamma-Ray Spectroscopy of sd -shell Hypernucleus, 21 st , - PowerPoint PPT Presentation

First Gamma-Ray Spectroscopy of sd -shell Hypernucleus, 21 st , November, 2016 -Neutron Star Matter 2016- YANG Seongbae Department of Physics and Astronomy Seoul National University 1 1. Introduction 2 1. Introdu oduction


  1. First Gamma-Ray Spectroscopy of sd -shell Hypernucleus, 𝚳 𝟐𝟘 𝐆 21 st , November, 2016 -Neutron Star Matter 2016- YANG Seongbae Department of Physics and Astronomy Seoul National University 1

  2. 1. Introduction 2

  3. 1. Introdu oduction tion Previous Gamm-ray Spectroscopies β–  Previous Ξ³ -ray spectroscopies for s- shell hypernuclei *NaI detector 4 H *Ge detector Ξ› 4 He 4 He Ξ› Ξ› @PRL, 115, 222501 (2015) @PLB, 83, 252 (1979) 3

  4. 1. Introdu oduction tion β–  Previous Ξ³ -ray spectroscopies for p- shell hypernuclei (Hyperball project) @NPA, 835, 3 (2010) οƒ  The next step is awaited for heavier hypernuclei. 4

  5. 1. Introdu oduction tion Gamma-ray Spectroscopy of 𝚳 𝟐𝟘 𝐆 β–  It is the first Ξ³ -ray spectroscopy for sd -shell hypernuclei. β–  Energy spacing of ground state doublet (1/2 + , 3/2 + ) οƒ  Radial dependency of the Ξ› N spin-spin interaction? οƒ  Ξ› N spin-dependent interaction with different wave-function? Ξ› p + 16 O Spin-spin interaction n Ξ› low-lying energy levels of Ξ› 19 F *A. Umeya and T. Motoba NPA 116, 122501 (2016). 5

  6. 1. Introdu oduction tion 4 H 7 Li 19 F Ξ› Ξ› Ξ› Four-body p p p + Ξ› + Ξ› n + Ξ› 4 He 16 O Cluster n n n model Wave- 𝒕 𝑢 𝒕 𝜧 𝒒 𝑢 𝒕 𝜧 (𝒕𝒆) 𝑢 𝒕 𝜧 function 3.4 ( 1𝑑 1/2 ) 3.0 ( 0π‘ž 1/2 ) N, RMS 3.5 ( 0π‘ž 1/2 ) 2.5 ( 0𝑑 ) 2.9 ( 0π‘ž 3/2 ) radius [fm] 3.3 ( 0𝑒 5/2 ) @by Millener, private communication Ξ› , RMS 3.5 ( 0𝑑 ) 2.6 ( 0𝑑 ) 2.3 ( 0𝑑 ) radius [fm] @by Millener, private communication ? βˆ†πΉ 𝑦 0.695 MeV (ground 1.1 MeV ( Ξ” π‘ž 𝑂 𝑇 Ξ› =0.43 MeV) state doublet) 6

  7. 2. Experimental Setup 7

  8. 2. Experi rime mental tal Setup Experimental Setup of J-PARC E13 β–  Reaction: 19 F(𝐿 βˆ’ , 𝜌 βˆ’ ) Ξ› 19 F β–  K1.8 Beamline : High intensity and high purity 𝐿 βˆ’ beam οƒ  Intensity of 𝐿 βˆ’ beam: ~350 k/spill οƒ  𝐿 βˆ’ / 𝜌 βˆ’ = ~2.5 οƒ  1.8 GeV/c beam momentum β–  SKS & K1.8 Beamline Spectrometers οƒ  High resolution of missing mass οƒ  Large acceptance for (𝐿 βˆ’ , 𝜌 βˆ’ ) οƒ  good beam decay suppressor (SP0, SMF) Target: Liquid. H 2 Liquid. CF 4 8

  9. 2. Experi rime mental tal Setup β–  Hyperball-J 19 F βˆ— β†’ 𝛿 + 19 F βˆ— , Ξ› οƒ  19 F(𝐿 βˆ’ , 𝜌 βˆ’ ) Ξ› 19 F Ξ› οƒ  ~25 HPGe detectors - βˆ†E ~4.5 keV @ 1MeV οƒ  PWO counters - Fast background suppression Mechanical cooling system Crystal temp. ~70 K *a view of K1.8 experimental hall @NPA, 835, 3 (2012) 9

  10. 2. Experi rime mental tal Setup Data Sample for 𝚳 𝟐𝟘 𝐆 β–  05.2015~06.2015 at the J-PARC K1.8 Beamline Target Momentum Data Number of K (Thickness [g/cm 2 ]) [GeV/c] Beam 1.37, 1.5, . . through and 1.8 Ξ£ + and Ξ› CH 2 (6.6) 1.8 0.6 G 12 C CF 2 (6.6) 1.8 2.3 G 19 F Ξ› Physics Run Liquid. CF 4 (20) 1.8 63 G 10

  11. 3. Analysis 11

  12. 3. Analysi ysis (K, pi) Vertex Point (z-direction) and Reaction Angle β–  CF 4 target during physics run vertex (z) cut Reaction angle: 2~12 deg. *CF 4 target real length: 125 mm 12

  13. 3. Analysi ysis (K, pi) Particle Identification for 𝑳 βˆ’ and 𝝆 βˆ’ β–  At trigger line, K βˆ’ and Ο€ βˆ’ are identified by using AC counters. In addition, M 2 is used for identification of Ο€ βˆ’ . M 2 distribution of scattered particle 13

  14. 3. Analysi ysis (K, pi) Calibration run with CH 2 target (6.6 g/cm 2 ) 1 H(𝐿 βˆ’ , 𝜌 βˆ’ )Ξ£ + 12 C(𝐿 βˆ’ , 𝜌 βˆ’ ) Ξ› 12 C *2< ΞΈ <12 *2< ΞΈ <12 Ξ£ + g.s. of Ξ› 12 C MPV: 1.1901 Β± 0.0004 Β± 0.0001 GeV/𝑑 2 MPV: -11.06 Β± 0.18 Β± 0.21 MeV FWHM: 0.0060 Β± 0.0001 Β± 0.0002 GeV/𝑑 2 FWHM: 6.04 Β± 0.47 Β± 0.40 MeV +0.7 MeV level. οƒ  Absolute scale of missing mass: βˆ’0.7 οƒ  Expected missing mass resolution (FWHM) with CF 4 target: 8.7 Β± 0.4 MeV 14

  15. 3. Analysi sis ( Ξ³ ray ) Analysis for Ξ³ rays β–  By using Ξ³ rays from normal nuclei, energy resolution (FWHM) and accuracy of absolute energy level are estimated. Energy Resolution Energy Calibration οƒ  Energy Resolution: ~4.5 keV @1.0 MeV (the sum of all germaniums) οƒ  Ξ³ rays were measured under ~0.5 keV accuracy level at E < 3 MeV. 15

  16. 4. Results 16

  17. 4. Results lts - B 𝚳 Distribution of 𝚳 𝟐𝟘 𝐆 with CF 4 target (20 g/cm 2 ) β–  -21 MeV<- B Ξ› <-8 MeV is selected to observe the Ξ³ rays from low lying energy states. Threshold of Ξ› 15 N + Ξ± g.s. of Ξ› 12 C For Ξ³ rays from 𝚳 𝟐𝟘 𝐆 17

  18. 4. Results lts Ξ³ -ray spectra β–  Ξ³ -ray spectra: energy range: 0~1800 keV and without Doppler shift correction. There are two more peaks. 18

  19. 4. Results lts Ξ³ (315) and Ξ³ (895) Ξ³ (315) Ξ³ (895) +0.6 keV +0.6 keV οƒ  Energy: 315.5 Β±0.4 βˆ’0.5 οƒ  Energy: 895.2 Β±0.3 βˆ’0.5 19

  20. 4. Results lts β–  At the forward reaction angle, we found two more gamma-ray peaks at 953 keV and 1267 keV. Ξ³ (953) +0.5 keV οƒ  E: 952.8 Β±1.2 βˆ’0.6 ~313 keV Ξ³ (1267) οƒ  E: 1265.9 Β± 1.2 Β± 0.7 keV οƒ  The energy difference is consistent with the Ξ³ (315) energy. 20

  21. 5. Discussion 21

  22. 5. Discus ussion sion Transition Assignments β–  Based on theoretical calculations, the gamma rays are assigned to their gamma transitions. Ξ³ (952) Ξ³ (1267) Ξ³ (895) Ξ³ (315) 22

  23. 5. Discus ussion sion Spin-Spin Interaction in sd -shell Hypernuclei Shell-model Shell-model with Ξ› N spin- Theoretical with NSC97f model dependent Experiment Calculation by Umeya and interaction at p - Motoba shell hypernuclei by Millener Δ𝐹 ( 3/2 + , 1/2 + ) 419 305 +0.3 315.5 Β±0.4 βˆ’0.2 [keV] οƒ  The measured energy spacing is well represented by the spin-dependent interaction in p -shell hypernuclei. It also indicates the ΛΣ coupling effect is negligible for the energy spacing. οƒ  The results will be soon published in a major physics journal. 23

  24. 6. Summary 24

  25. 6. Summar ary Summary β–  A new 𝛿 -ray spectroscopy of sd-shell hypernucleus ( Ξ› 19 F ) via the (𝛬 βˆ’ , 𝜌 βˆ’ ) reaction with 1.8 GeV/𝑑 beam was performed at the J-PARC K1.8 beamline. β–  Several 𝛿 rays from 19 F are observed. The 19 F (315), 19 F (895), 19 F Ξ› Ξ› Ξ› Ξ› 19 F (1267) are assigned to the M1(3/2 + β†’ 1/2 + ) , E2(5/2 + β†’ (953), and Ξ› 1/2 + ) , E1(1/2 βˆ’ β†’ 3/2 + ) , and E1(1/2 βˆ’ β†’ 1/2 + ) transitions, respectively. β–  The measured energy spacing (315 keV) between the ground state doublet is well represented by the spin-dependent interaction at p- shell hypernuclei. β–  It is meaningful to extend the 𝛿 -ray spectroscopy to medium hypernuclei, and it will be a guide for future experiments. 25

  26. *Back Up 26

  27. *Back Up Up K1.8 Beamline β–  K1.8 Beamline : High intensity and high purity 𝐿 βˆ’ beam οƒ  Intensity of 𝐿 βˆ’ beam: ~350 k/spill οƒ  𝐿 βˆ’ / 𝜌 βˆ’ = ~2.5 *J-PARC Hadron facility Secondary Beam Proton Beam 27 @PTEP , 2012, 02B009

  28. * Back up up Energy calibration Energy of Ξ³ ray is calibrated through two steps. 1. Off-beam calibration: spill-off condition for each runs 2. In-beam calibration: spill-on condition Off-beam calibration: Three Ξ³ ray from 238 Th source Fit by 1 st polynomial 28

  29. * Back up up In-beam calibration: 10 Ξ³ rays from normal nuclei Fit by 1 st polynomial Fit by 1 st polynomial +Exponential functions 29

  30. *Back up up - B 𝚳 Distribution of 𝚳 𝟐𝟘 𝐆 with CF 2 Target (6.6 g/cm 2 ) *Reaction angle, 2< ΞΈ <12 Structure of 19 F Ξ› *Background from Ξ› 12 C is estimated using calibration data with CH 2 target. 30

Recommend


More recommend