finite element methods for maxwell s equations a local a
play

Finite element methods for Maxwells equations: A local a priori - PowerPoint PPT Presentation

5. Weihnachtskolloquium Dec 20, 2016 Finite element methods for Maxwells equations: A local a priori estimate Claudio Rojik Vienna University of Technology Institute for Analysis and Scientific Computing Finite element methods for


  1. 5. Weihnachtskolloquium Dec 20, 2016 Finite element methods for Maxwell’s equations: A local a priori estimate Claudio Rojik Vienna University of Technology Institute for Analysis and Scientific Computing

  2. Finite element methods for Maxwell’s equations: A local a priori estimate Motivation Claudio Rojik (TU Wien)

  3. Finite element methods for Maxwell’s equations: A local a priori estimate Motivation A local a priori estimate for Poisson’s equation Assumptions Ω ⊆ R n . . . bounded domain Claudio Rojik (TU Wien) – 1 –

  4. Finite element methods for Maxwell’s equations: A local a priori estimate Motivation A local a priori estimate for Poisson’s equation Assumptions Ω ⊆ R n . . . bounded domain Poisson’s equation − ∆ u = f in Ω � Ω ∇ u · ∇ v dx for u, v ∈ H 1 (Ω) corresponding bilinear form a ( u, v ) := Claudio Rojik (TU Wien) – 1 –

  5. Finite element methods for Maxwell’s equations: A local a priori estimate Motivation A local a priori estimate for Poisson’s equation Assumptions Ω ⊆ R n . . . bounded domain Poisson’s equation − ∆ u = f in Ω � Ω ∇ u · ∇ v dx for u, v ∈ H 1 (Ω) corresponding bilinear form a ( u, v ) := T h . . . triangulation of Ω with element diameter h W h (Ω) ⊆ H 1 (Ω) . . . H 1 -conforming finite element space Claudio Rojik (TU Wien) – 1 –

  6. Finite element methods for Maxwell’s equations: A local a priori estimate Motivation A local a priori estimate for Poisson’s equation Theorem 1 (Nitsche and Schatz 1974) Let B 0 be a ball with radius r and B d be the concentric ball with radius r + d , where d ≫ h . (Of course B d ⊆ Ω must hold.) If u h ∈ W h (Ω) is a FEM-approximation to u ∈ H 1 (Ω) satisfying a ( u − u h , χ ) = 0 for χ ∈ W comp ( B d ) , then h � � � u − χ � H 1 ( B d ) + d − 1 � u − χ � L 2 ( B d ) � u − u h � H 1 ( B 0 ) ≤ C min χ ∈ W h ( B d ) + Cd − 1 � u − u h � L 2 ( B d ) . Claudio Rojik (TU Wien) – 2 –

  7. Finite element methods for Maxwell’s equations: A local a priori estimate Motivation Can we establish a similar a priori estimate if we consider Maxwell’s equations instead of Poisson’s equation? Claudio Rojik (TU Wien) – 3 –

  8. Finite element methods for Maxwell’s equations: A local a priori estimate FEM setting for Maxwell’s equations Claudio Rojik (TU Wien)

  9. Finite element methods for Maxwell’s equations: A local a priori estimate FEM setting for Maxwell’s equations Maxwell’s equations E, H . . . electric field intensity, magnetic field intensity B, D . . . magnetic flux density, displacement current density j, ρ . . . electric current density, charge density Claudio Rojik (TU Wien) – 4 –

  10. Finite element methods for Maxwell’s equations: A local a priori estimate FEM setting for Maxwell’s equations Maxwell’s equations E, H . . . electric field intensity, magnetic field intensity B, D . . . magnetic flux density, displacement current density j, ρ . . . electric current density, charge density Maxwell’s equations curl E = − ∂B ∂t curl H = ∂D ∂t + j div D = ρ div B = 0 Claudio Rojik (TU Wien) – 4 –

  11. Finite element methods for Maxwell’s equations: A local a priori estimate FEM setting for Maxwell’s equations Maxwell’s equations Introduce vector potential A : E = − ∂A ∂t Maxwell’s equations + material laws B = µH, j = σE, D = ǫE ⇒ curl( µ − 1 curl A ) + κA = j µ is the permeability, κ ∈ C is a constant depending on the setting! We will set µ ≡ 1 for simplicity. Claudio Rojik (TU Wien) – 5 –

  12. Finite element methods for Maxwell’s equations: A local a priori estimate FEM setting for Maxwell’s equations Variational framework Assumptions Ω ⊆ R 3 bounded domain with polyhedral boundary div j = 0 κ ∈ C \{ 0 } Claudio Rojik (TU Wien) – 6 –

  13. Finite element methods for Maxwell’s equations: A local a priori estimate FEM setting for Maxwell’s equations Variational framework Assumptions Ω ⊆ R 3 bounded domain with polyhedral boundary div j = 0 κ ∈ C \{ 0 } Weak formulation Find u ∈ H 0 (curl , Ω) such that b ( u, v ) = ( j, v ) L 2 (Ω) ∀ v ∈ H 0 (curl , Ω) where b ( u, v ) := (curl u, curl v ) L 2 (Ω) + κ ( u, v ) L 2 (Ω) . Claudio Rojik (TU Wien) – 6 –

  14. Finite element methods for Maxwell’s equations: A local a priori estimate FEM setting for Maxwell’s equations Finite element spaces: H 1 -conforming T h . . . triangulation of Ω with element diameter h Claudio Rojik (TU Wien) – 7 –

  15. Finite element methods for Maxwell’s equations: A local a priori estimate FEM setting for Maxwell’s equations Finite element spaces: H 1 -conforming T h . . . triangulation of Ω with element diameter h P 1 ( K ) denotes the space of polynomials of degree 1 in K Claudio Rojik (TU Wien) – 7 –

  16. Finite element methods for Maxwell’s equations: A local a priori estimate FEM setting for Maxwell’s equations Finite element spaces: H 1 -conforming T h . . . triangulation of Ω with element diameter h P 1 ( K ) denotes the space of polynomials of degree 1 in K Definition We define W h (Ω) := { u h ∈ H 1 (Ω) : ( u h ) | K ∈ P 1 ( K ) ∀ K ∈ T h } . The space W h is a H 1 -conforming finite element space. Claudio Rojik (TU Wien) – 7 –

  17. Finite element methods for Maxwell’s equations: A local a priori estimate FEM setting for Maxwell’s equations Finite element spaces: H (curl) -conforming Definition Using R k := ( P k − 1 ) 3 ⊕ { p ∈ ( ˜ P k ) 3 : x · p = 0 } , we define V h (Ω) := { v h ∈ H (curl , Ω) : v h | K ∈ R 1 ∀ K ∈ T h } . The space V h is now H (curl) -conforming. Claudio Rojik (TU Wien) – 8 –

  18. Finite element methods for Maxwell’s equations: A local a priori estimate FEM setting for Maxwell’s equations Finite element spaces: H (div) -conforming Definition Using D k := ( P k − 1 ) 3 ⊕ ˜ P k − 1 x we define Q h (Ω) := { q h ∈ H (div , Ω) : q h | K ∈ D 1 ∀ K ∈ T h } The space Q h is a H (div) -conforming finite element space. Claudio Rojik (TU Wien) – 9 –

  19. Finite element methods for Maxwell’s equations: A local a priori estimate FEM setting for Maxwell’s equations The DeRham-diagram curl div ∇ H 1 (Ω) L 2 (Ω) − → H (curl , Ω) − → H (div , Ω) − → ↓ π h ↓ r h ↓ w h ↓ p 0 ,h ∇ curl div W h (Ω) − → V h (Ω) − → Q h (Ω) − → S h (Ω) Claudio Rojik (TU Wien) – 10 –

  20. Finite element methods for Maxwell’s equations: A local a priori estimate FEM setting for Maxwell’s equations An idea of the a priori estimate We are currently working on establishing an estimate similar to the following: Theorem 2 (Idea) Let B 0 be a ball with radius r and B d be the concentric ball with radius r + d , where h ≪ d ≤ 1 . (Of course B d ⊆ Ω must hold.) If u h ∈ V h (Ω) is a FEM-approximation to u ∈ H (curl , Ω) satisfying b ( u − u h , χ ) = 0 for χ ∈ V comp ( B d ) , then h � d − 1 / 2 � u − χ � H (curl ,B d ) � u − u h � H (curl ,B 0 ) ≤ C min χ ∈ V h ( B d ) � + d − 1 � u − χ � L 2 ( B d ) + Cd − 1 � u − u h � L 2 ( B d ) . Claudio Rojik (TU Wien) – 11 –

  21. Finite element methods for Maxwell’s equations: A local a priori estimate FEM setting for Maxwell’s equations An idea of the a priori estimate Questions and problems: Claudio Rojik (TU Wien) – 12 –

  22. Finite element methods for Maxwell’s equations: A local a priori estimate FEM setting for Maxwell’s equations An idea of the a priori estimate Questions and problems: The bilinear form b contains an L 2 -term with a constant κ . Change assumptions in the theorem suitably? Claudio Rojik (TU Wien) – 12 –

  23. Finite element methods for Maxwell’s equations: A local a priori estimate FEM setting for Maxwell’s equations An idea of the a priori estimate Questions and problems: The bilinear form b contains an L 2 -term with a constant κ . Change assumptions in the theorem suitably? u h ∈ W comp Proof of Theorem 1 → � ( B d ) and a (˜ u − � u h , � u h ) = 0 h = ⇒ | � u h | H 1 ( B d ) ≤ | ˜ u | H 1 ( B d ) Claudio Rojik (TU Wien) – 12 –

  24. Finite element methods for Maxwell’s equations: A local a priori estimate FEM setting for Maxwell’s equations An idea of the a priori estimate Questions and problems: The bilinear form b contains an L 2 -term with a constant κ . Change assumptions in the theorem suitably? u h ∈ W comp Proof of Theorem 1 → � ( B d ) and a (˜ u − � u h , � u h ) = 0 h = ⇒ | � u h | H 1 ( B d ) ≤ | ˜ u | H 1 ( B d ) u − � u h ) = 0 ⇒ ? b (˜ u h , � Claudio Rojik (TU Wien) – 12 –

  25. Finite element methods for Maxwell’s equations: A local a priori estimate FEM setting for Maxwell’s equations An idea of the a priori estimate Questions and problems: The bilinear form b contains an L 2 -term with a constant κ . Change assumptions in the theorem suitably? u h ∈ W comp Proof of Theorem 1 → � ( B d ) and a (˜ u − � u h , � u h ) = 0 h = ⇒ | � u h | H 1 ( B d ) ≤ | ˜ u | H 1 ( B d ) u − � u h ) = 0 ⇒ ? b (˜ u h , � d − 1 / 2 � u − χ � H (curl ,B d ) → only quasi-optimality dependent on d . Improvement possible? Claudio Rojik (TU Wien) – 12 –

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend