finite connections for supercritical bernoulli bond
play

Finite Connections for Supercritical Bernoulli Bond Percolation in - PowerPoint PPT Presentation

Introduction Sketch of Proof Summary Finite Connections for Supercritical Bernoulli Bond Percolation in 2D M. Campanino 1 D. Ioffe 2 O. Louidor 3 1 Universit di Bologna (Italy) 2 Technion (Israel) 3 Courant (New York University) Courant


  1. Introduction Sketch of Proof Summary Finite Connections for Supercritical Bernoulli Bond Percolation in 2D M. Campanino 1 D. Ioffe 2 O. Louidor 3 1 Università di Bologna (Italy) 2 Technion (Israel) 3 Courant (New York University) Courant Probability Seminar, 11/6/2009

  2. Introduction Sketch of Proof Summary Outline Introduction Percolation on Z d Logarithmic Asymptotics of Connectivities Sharp Asymptotics of Connectivities Sketch of Proof Setup Geometry of Finite Connections The Structure of a Cluster Asymptotics for No Intersection of Two Decorated RWs Summary

  3. Introduction Sketch of Proof Summary Outline Introduction Percolation on Z d Logarithmic Asymptotics of Connectivities Sharp Asymptotics of Connectivities Sketch of Proof Setup Geometry of Finite Connections The Structure of a Cluster Asymptotics for No Intersection of Two Decorated RWs Summary

  4. Introduction Sketch of Proof Summary Percolation • Take G = ( Z d , E d ) - the integer lattice with nearest neighbor edges. • Open each edge with probability p ∈ [ 0 , 1 ] independently. • Let B p be the underlying measure. Theorem (Broadbent, Hammersley 1957) For all d > 2 , there exists p c ( d ) ∈ ( 0 , 1 ) such that: � 0 if p < p c ( d ) B p ( 0 ← → ∞ ) = θ ( p ) > 0 if p > p c ( d )

  5. Introduction Sketch of Proof Summary Basic Picture Sub-critical density p < p c ( d ) : • All clusters (connected components) are finite. • Radii of clusters have exponentially decaying distributions: → ∂ B ( R )) ≈ e − ξ p R . ∃ ξ p ∈ ( 0 , ∞ ) : B p ( 0 ← Russo-Menshikov (86), Barskey-Aizenman (87). Super-critical density p > p c ( d ) : • Unique infinite cluster B p -a.s. • Radii of finite clusters have exponentially decaying distributions: B p ( ∞ � 0 ↔ ∂ B ( R )) ≈ e − ζ p R . ∃ ζ p ∈ ( 0 , ∞ ) : Chayes 2 -Newman (87), C 2 -Grimmett-Kesten-Schonmann (89).

  6. Introduction Sketch of Proof Summary Connectivities The point-to-point connectivity function is defined as: x , y ∈ Z d . τ p ( x , y ) = B p ( x ← → y ) ;

  7. Introduction Sketch of Proof Summary Connectivities The point-to-point connectivity function is defined as: x , y ∈ Z d . τ p ( x , y ) = B p ( x ← → y ) ; Sub-critical case: Subadditivity (via FKG of B p ) and exponential decay of cluster radius distribution imply: Theorem Assume p < p c ( d ) . Then, for all x ∈ R d : n →∞ − 1 ξ p ( x ) = lim n log τ p ( 0 , ⌊ n x ⌋ ) is well-defined, convex and homogeneous function that is strictly positive on R d \ { 0 } . In other words ξ p is a norm on R d , called the inverse correlation norm.

  8. Introduction Sketch of Proof Summary Connectivities - cont’d Super-critical case: FKG gives a uniform positive lower bound for all x , y ∈ Z d : → y ) � B p ( x ← → ∞ ) = θ 2 ( p ) > 0 . B p ( x ← → ∞ ) B p ( y ←

  9. Introduction Sketch of Proof Summary Connectivities - cont’d Super-critical case: FKG gives a uniform positive lower bound for all x , y ∈ Z d : → y ) � B p ( x ← → ∞ ) = θ 2 ( p ) > 0 . B p ( x ← → ∞ ) B p ( y ← Therefore, define the finite (truncated) connectivity function: f x , y ∈ Z d . τ f ← → y ) = B p ( ∞ � x ↔ y ) ; p ( x , y ) = B p ( x

  10. Introduction Sketch of Proof Summary Connectivities - cont’d Super-critical case: FKG gives a uniform positive lower bound for all x , y ∈ Z d : → y ) � B p ( x ← → ∞ ) = θ 2 ( p ) > 0 . B p ( x ← → ∞ ) B p ( y ← Therefore, define the finite (truncated) connectivity function: f x , y ∈ Z d . τ f ← → y ) = B p ( ∞ � x ↔ y ) ; p ( x , y ) = B p ( x Theorem ∈ { 0 , p c ( d ) , 1 } . Then, for all x ∈ R d : Assume p / n →∞ − 1 n log τ f ζ p ( x ) = lim p ( 0 , ⌊ n x ⌋ ) is well-defined, homogeneous and strictly positive on R d \ { 0 } . This is the finite (truncated) inverse correlation function.

  11. Introduction Sketch of Proof Summary Logarithmic Scale Asymptotics In other words: f → y ) ≈ e − ξ p ( θ ) � y − x � 2 → y ) ≈ e − ζ p ( θ ) � y − x � 2 B p ( x ← and B p ( x ← for all x , y ∈ Z d as y − x → ∞ , where θ = ( x − y ) / � x − y � 2 .

  12. Introduction Sketch of Proof Summary Logarithmic Scale Asymptotics In other words: f → y ) ≈ e − ξ p ( θ ) � y − x � 2 → y ) ≈ e − ζ p ( θ ) � y − x � 2 B p ( x ← and B p ( x ← for all x , y ∈ Z d as y − x → ∞ , where θ = ( x − y ) / � x − y � 2 . Some relations: • ξ p = ξ p ( e 1 ) . ζ p = ζ p ( e 1 ) . • If d = 2, p > p c ( 2 ) = 1 2 then ζ p = 2 ξ 1 − p . Chayes-Chayes-Grimmett-Kesten-Schonmann (89).

  13. Introduction Sketch of Proof Summary Logarithmic Scale Asymptotics In other words: f → y ) ≈ e − ξ p ( θ ) � y − x � 2 → y ) ≈ e − ζ p ( θ ) � y − x � 2 B p ( x ← and B p ( x ← for all x , y ∈ Z d as y − x → ∞ , where θ = ( x − y ) / � x − y � 2 . Some relations: • ξ p = ξ p ( e 1 ) . ζ p = ζ p ( e 1 ) . • If d = 2, p > p c ( 2 ) = 1 2 then ζ p = 2 ξ 1 − p . Chayes-Chayes-Grimmett-Kesten-Schonmann (89). Want sharp asymptotics: → y ) ∼ ? → y ) ∼ ? f B p ( x ← and B p ( x ←

  14. Introduction Sketch of Proof Summary Sharp Asymptotics - Subcritical Case For all d � 2, p < p c ( d ) , x , y ∈ Z d : → y ) ∼ A p ( θ ) � y − x � − ( d − 1 ) / 2 e − ξ p ( θ ) � y − x � 2 B p ( x ← as y − x → ∞ . 2 • Campanino-Chayes-Chayes (88) (y − x is on the axes). • Campanino-Ioffe (02) (all y − x). With the Gaussian correction this is called Ornstein-Zernike Behavior. after the work of L.Ornstein and F.Zernike.

  15. Introduction Sketch of Proof Summary Sharp Asymptotics - Supercritical Case d � 3: For all p > p c ( d ) , x , y ∈ Z d , it is expected: f A p ( θ ) � y − x � − ( d − 1 ) / 2 → y ) ∼ � e − ζ p ( θ ) � y − x � 2 B p ( x ← as y − x → ∞ . 2 Verified for p ≫ p c ( d ) and y − x on axes. Braga-Procacci-Sanchis (04) .

  16. Introduction Sketch of Proof Summary Sharp Asymptotics - Supercritical Case d � 3: For all p > p c ( d ) , x , y ∈ Z d , it is expected: f A p ( θ ) � y − x � − ( d − 1 ) / 2 → y ) ∼ � e − ζ p ( θ ) � y − x � 2 B p ( x ← as y − x → ∞ . 2 Verified for p ≫ p c ( d ) and y − x on axes. Braga-Procacci-Sanchis (04) . d = 2:

  17. Introduction Sketch of Proof Summary Sharp Asymptotics - Supercritical Case d � 3: For all p > p c ( d ) , x , y ∈ Z d , it is expected: f A p ( θ ) � y − x � − ( d − 1 ) / 2 → y ) ∼ � e − ζ p ( θ ) � y − x � 2 B p ( x ← as y − x → ∞ . 2 Verified for p ≫ p c ( d ) and y − x on axes. Braga-Procacci-Sanchis (04) . d = 2: ?

  18. Introduction Sketch of Proof Summary A Related Model - Nearest-Neighbor Ising

  19. Introduction Sketch of Proof Summary A Related Model - Nearest-Neighbor Ising Exactly solvable in d = 2 ( Onsager (44) ). Explicit formulas for (truncated) k -point correlation functions at all temperatures ( Wu, McCoy, Tracy, Potts, Ward, Montroll (’70) ). Theorem (Cheng-Wu, Wu) If β < β c ( 2 ) then � σ x ; σ y � β � � σ x σ y � β ∼ A β ( θ ) � y − x � − 1 / 2 e − ξ β ( θ ) � y − x � 2 2 and if β > β c ( 2 ) then: � σ x ; σ y � T β � � σ x σ y � β − � σ x � β � σ y � β ∼ � A β ( θ ) � y − x � − 2 2 e − ζ β ( θ ) � y − x � 2 for all x , y ∈ Z 2 as y − x → ∞ . No OZ Behavior in d = 2 below the critical temperature!

  20. Introduction Sketch of Proof Summary Sharp Asymptotics - Supercritical Case d � 3: For all p > p c ( d ) , x , y ∈ Z d , it is expected: f A p ( θ ) � y − x � − ( d − 1 ) / 2 → y ) ∼ � e − ζ p ( θ ) � y − x � 2 B p ( x ← as y − x → ∞ . 2 Verified for p ≫ p c ( d ) and y − x on axes. Braga-Procacci-Sanchis (04) . d = 2: ?

  21. Introduction Sketch of Proof Summary Sharp Asymptotics - Supercritical Case d � 3: For all p > p c ( d ) , x , y ∈ Z d , it is expected: f A p ( θ ) � y − x � − ( d − 1 ) / 2 → y ) ∼ � e − ζ p ( θ ) � y − x � 2 B p ( x ← as y − x → ∞ . 2 Verified for p ≫ p c ( d ) and y − x on axes. Braga-Procacci-Sanchis (04) . d = 2: Theorem (Campanino, Ioffe, L. (09)) For all p > p c ( 2 ) = 1 / 2 , x , y ∈ Z 2 : f → y ) ∼ � A p ( θ ) � y − x � − 2 2 e − ζ p ( θ ) � y − x � 2 B p ( x ← as y − x → ∞ .

  22. Introduction Sketch of Proof Summary Outline Introduction Percolation on Z d Logarithmic Asymptotics of Connectivities Sharp Asymptotics of Connectivities Sketch of Proof Setup Geometry of Finite Connections The Structure of a Cluster Asymptotics for No Intersection of Two Decorated RWs Summary

  23. Introduction Sketch of Proof Summary Setup Dual lattice. • In d = 2 there is an isomorphic dual Z 2 ∗ . • Set: b ∗ is open ⇐ ⇒ b is close . • The dual model is Percolation with p ∗ = 1 − p . f • We assume p < p c ( 2 ) and find B p ( x ∗ → y ∗ ) . ← • However, we’ll express this event mainly using direct bonds. • For simplicity: x ∗ = 0 ∗ , y ∗ = 0 ∗ + ( N , 0 ) � N ∗ .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend