financial econometrics econ 40357 arima part 2
play

Financial Econometrics Econ 40357 ARIMA Part 2: Autoregressive - PowerPoint PPT Presentation

Financial Econometrics Econ 40357 ARIMA Part 2: Autoregressive Models N.C. Mark University of Notre Dame and NBER August 30, 2020 1 / 22 Autoregressive (AR) models. These are models with more durable, persistent dependence over time. iid


  1. Financial Econometrics Econ 40357 ARIMA Part 2: Autoregressive Models N.C. Mark University of Notre Dame and NBER August 30, 2020 1 / 22

  2. Autoregressive (AR) models. These are models with more durable, persistent dependence over time. iid ∼ ( 0 , σ 2 Let ǫ t ǫ ) , and | ρ | < 1 . Then the AR(1) model is y t = a + ρ y t − 1 + ǫ t where σ 2 a ( 1 − ρ 2 ) , ρ ( y t , y t − k ) = ρ k ǫ E ( y t ) = µ = ( 1 − ρ ) , Var ( y t ) = Note: a = µ ( 1 − ρ ) , which means we can also write it as y t = µ ( 1 − ρ ) + ρ y t − 1 + ǫ t 2 / 22

  3. The MA representation of the AR(1) The AR(1) can also be represented as an MA ( ∞ ) . = a + ρ ( a + ρ y t − 2 + ǫ t − 1 ) + ǫ t y t � �� � y t − 1 a + ρ a + ρ 2 ( a + ρ y t − 3 + ǫ t − 2 ) = + ρǫ t − 1 + ǫ t � �� � y t − 2 a + ρ a + ρ 2 a + ǫ t + ρǫ t − 1 + ρ 2 ǫ t − 2 + ρ 2 y t − 3 = . . . � � 1 + ρ + ρ 2 + ρ 3 + · · · + ǫ t + ρǫ t − 1 + ρ 2 ǫ t − 2 + ρ 3 ǫ t − 3 + · · · = a � �� � a / ( 1 − ρ ) a 1 − ρ + ǫ t + ρǫ t − 1 + ρ 2 ǫ t − 2 + ρ 3 ǫ t − 3 + · · · = 3 / 22

  4. What is the mean E ( y t ) ? � � a 1 − ρ + ǫ t + ρǫ t − 1 + ρ 2 ǫ t − 2 + ρ 3 ǫ t − 3 + · · · E ( y t ) = E � � a 1 − ρ + E ǫ t + ρ E ǫ t − 1 + ρ 2 E ǫ t − 2 + ρ 3 E ǫ t − 3 + · · · = a = 1 − ρ 4 / 22

  5. What is the Variance Var ( y t ) ? � � 2 σ 2 ǫ t + ρǫ t − 1 + ρ 2 ǫ t − 2 + ρ 3 ǫ t − 3 + · · · = Var ( y t ) = E y � � ǫ 2 t + ρ 2 ǫ 2 t − 1 + ρ 4 ǫ 2 t − 2 + · · · + 2 ρǫ t ǫ t − 1 + 2 ρ 2 ǫ t ǫ t − 2 + · · · = E    E ǫ 2 t + ρ 2 E ǫ 2 t − 1 + ρ 4 E ǫ 2 t − 2 + · · · + 2 ρ E ǫ t ǫ t − 1 + 2 ρ 2 E ǫ t ǫ t − 2 + · · · =  � �� � 0 � � 1 + ρ 2 + ρ 4 + · · · σ 2 = ǫ σ 2 ǫ = 1 − ρ 2 5 / 22

  6. What is the autocorrelation function? First, write the AR(1) in deviations from the mean form, = µ ( 1 − ρ ) + ρ y t − 1 + ǫ t y t y t − µ = ρ ( y t − 1 − µ ) + ǫ t Then, = Cov ( y t , y t − 1 ) = E ( y t − µ ) ( y t − 1 − µ ) γ 1 = E ( ρ ( y t − 1 − µ ) + ǫ t ) ( y t − 1 − µ ) ρ E ( y t − 1 − µ ) 2 = + E ( ǫ t ( y t − 1 − µ )) � �� � � �� � Var ( y t − 1 ) 0 = ρ Var ( y t ) = ρσ y σ y Hence, ρ ( y t , y t − 1 ) = ρ 6 / 22

  7. γ 2 = Cov ( y t , y t − 2 ) = E ( y t − µ ) ( y t − 2 − µ ) = E ( ρ ( y t − 1 − µ ) + ǫ t ) ( y t − 2 − µ ) = ρ E ( y t − 1 − µ ) ( y t − 2 − µ ) + E ( ǫ t ( y t − 2 − µ )) � �� � � �� � γ 1 0 = ργ 1 ρ ( y t , y t − 2 ) = ργ 1 = ρρσ y σ y = ρ 2 σ y σ y σ y σ y We can infer that ρ ( y t , y t − k ) = ρ k 7 / 22

  8. AR(1) forecasts E t ( ˜ y t + 1 ) = ρ ˜ y t y t + 1 ) = ρ 2 ˜ E t ( ˜ y t + 2 ) = ρ E t ( ˜ y t Hence, y t + k ) = ρ k ˜ E t ( ˜ y t Try it out on daily stock returns. 8 / 22

  9. Realization of an AR(1) with ρ = 0 . 96 9 / 22

  10. How to generate in Eviews ’ Generate white noise process series e = nrnd ’Generate persistent AR(1) smpl @first @first series sto = 0 ’ Initial conditions smpl @first+1 @last series sto = .96*sto(-1)+.5*e ’ Recursion series y = sto delete sto (To get impulse response: Quick, estimate VAR) (arima models.wf1 and pgm) 10 / 22

  11. Impulse Response Function The impulse response function traces the effect of a one time, one-standard deviation shock today ǫ t = σ ǫ , on the current and all future values y t , y t + 1 , y t + 2 , .... Stationary processes will revert to their mean values. Let’s analyze as deviations from the mean (set µ = 0). AR(1): y t = ρ y t − 1 + ǫ t , 0 < ρ < 1 . y t = ǫ t = ρ y t = ρǫ t y t + 1 ρ y t + 1 = ρ 2 ǫ t y t + 2 = ρ k ǫ t = y t + k 11 / 22

  12. Another representation of impulse response. MA representation (mean suppressed µ = 0), y t = ǫ t + ρǫ t − 1 + ρ 2 ǫ t − 2 + ρ 3 ǫ t − 3 + · · · One time shock ǫ t , with all other shocks shut down, ǫ k = 0 , k � = t = y t ǫ t y t + 1 = ρǫ t ρ 2 ǫ t = y t + 2 and so on. Later, I will show you how to generate implulse responses in Eviews. 12 / 22

  13. Impulse response of AR(1) 13 / 22

  14. AR(1) with negative ρ 14 / 22

  15. Unit Root Nonstationarity Why | ρ | < 1 is necessary for stationarity? It is usually the case that 0 < ρ < 1 in economics and finance (persistence). What happens to the mean and the variance of y t when ρ = 1? What happens to the impulse response function when ρ = 1? (permanent effect). 15 / 22

  16. Realization of a driftless Random Walk 16 / 22

  17. Random walk with drift 17 / 22

  18. The AR(2) model. Back to Stationary Models. iid � � 0 , σ 2 Let ǫ t ∼ . The second-order autoregressive model (AR(2)) is ǫ y t = a + ρ 1 y t − 1 + ρ 2 y t − 2 + ǫ t and is stationary if | ρ 1 + ρ 2 | < 1 . Assume stationarity, take expectations µ y = a + ρ 1 µ y + ρ 2 µ y µ y a = 1 − ρ 1 − ρ 2 Computing variance and autocovariances by hand is too complicated. It involves taking variance and first-order covariance σ 2 ρ 2 1 σ 2 y + ρ 2 2 σ 2 y + 2 ρ 1 ρ 2 γ 1 + σ 2 = y ǫ ρ 1 σ 2 y ρ 1 σ 2 γ 1 = y + ρ 2 γ 1 → γ 1 = 1 − ρ 2 Then you must to solve these two equations for σ 2 y and γ 1 . 18 / 22

  19. AR(2) Impulse Response Function AR(2) with µ = 0 (or in deviation from mean form). y t = ρ 1 y t − 1 + ρ 2 y t − 2 + ǫ t Let y 0 = y − 1 = 0 , One-time shock at time 1, ǫ 1 , with all other shocks shut down. Trace effect recursively = y 1 ǫ 1 = ρ 1 y 1 = ρ 1 ǫ 1 y 2 � � ρ 2 = ρ 1 y 2 + ρ 2 y 1 = 1 + ρ 2 y 3 ǫ t � � ρ 2 y 4 = ρ 1 y 3 + ρ 2 y 2 = ρ 1 1 + 2 ρ 2 ǫ 1 and so on Is possible to get cyclical impulse responses. 19 / 22

  20. Realization and Impulse Response AR(2) ρ 1 = 0 . 8 , ρ 2 = − 0 . 8 20 / 22

  21. AR(2) forecasts Form the forecasts and input recursively. E t ( ˜ y t + 1 ) = ρ 1 ˜ y t + ρ 2 ˜ y t − 1 E t ( ˜ y t + 2 ) = ρ 1 ( E t ( ˜ y t + 1 )) + ρ 2 ˜ y t E t ( ˜ = ρ 1 ( E t ( ˜ y t + 2 )) + ρ 2 E t ( ˜ y t + 3 ) y t + 1 ) 21 / 22

  22. Extensions No need to stop at AR(2). Can add more and more lags. 1 In MA model, can add more and more lagged shocks. 2 Difference between MA and AR. 3 AR is dependence across time of observations. MA is dependence across time of shocks. MA memory is finite 4 AR memory is infinite (but diminishes exponentially) 5 Can combine MA and AR. Here’s ARMA(1,1) 6 y t = a + ρ y t − 1 + ǫ t + θ 1 ǫ t − 1 22 / 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend