figure 1 list of all boolean clones with bases
play

Figure 1: List of all Boolean clones with bases ( h n = i =1 x 1 - PDF document

Class Definition Base(s) BF all Boolean functions { and , not } R 0 { f BF | f is 0-reproducing } { and , xor } R 1 { f BF | f is 1-reproducing } { or , x y 1 } R 2 R 1 R 0 { or , x ( y z 1) } M { f BF | f is


  1. Class Definition Base(s) BF all Boolean functions { and , not } R 0 { f ∈ BF | f is 0-reproducing } { and , xor } R 1 { f ∈ BF | f is 1-reproducing } { or , x ⊕ y ⊕ 1 } R 2 R 1 ∩ R 0 { or , x ∧ ( y ⊕ z ⊕ 1) } M { f ∈ BF | f is monotonic } { and , or , c 0 , c 1 } M 1 M ∩ R 1 { and , or , c 1 } M 0 M ∩ R 0 { and , or , c 0 } M 2 M ∩ R 2 { and , or } S n { f ∈ BF | f is 0-separating of degree n } { imp , dual( h n ) } 0 S 0 { f ∈ BF | f is 0-separating } { imp } S n { f ∈ BF | f is 1-separating of degree n } { x ∧ y , h n } 1 { f ∈ BF | f is 1-separating } { x ∧ y } S 1 S n S n 0 ∩ R 2 { x ∨ ( y ∧ z ) , dual( h n ) } 02 S 0 ∩ R 2 { x ∨ ( y ∧ z ) } S 02 S n S n 0 ∩ M { dual( h n ) , c 1 } 01 S 01 S 0 ∩ M { x ∨ ( y ∧ z ) , c 1 } S n S n 0 ∩ R 2 ∩ M { x ∨ ( y ∧ z ) , dual( h n ) } 00 S 00 S 0 ∩ R 2 ∩ M { x ∨ ( y ∧ z ) } S n S n 1 ∩ R 2 { x ∧ ( y ∨ z ) , h n } 12 S 12 S 1 ∩ R 2 { x ∧ ( y ∨ z ) } S n S n 1 ∩ M { h n , c 0 } 11 S 11 S 1 ∩ M { x ∧ ( y ∨ z ) , c 0 } S n S n 1 ∩ R 2 ∩ M { x ∧ ( y ∨ z ) , h n } 10 S 10 S 1 ∩ R 2 ∩ M { x ∧ ( y ∨ z ) } D { f | f is self-dual } { xy ∨ xz ∨ yz } D 1 D ∩ R 2 { xy ∨ xz ∨ yz } D 2 D ∩ M { xy ∨ yz ∨ xz } L { f | f is linear } { xor , c 1 } L 0 L ∩ R 0 { xor } L ∩ R 1 { eq } L 1 L ∩ R 2 { x ⊕ y ⊕ z } L 2 L ∩ D { x ⊕ y ⊕ z ⊕ c 1 } L 3 { f | f is an n -ary or -function or a constant function } { or , c 0 , c 1 } V V 0 [ { or } ] ∪ [ { c 0 } ] { or , c 0 } V 1 [ { or } ] ∪ [ { c 1 } ] { or , c 1 } V 2 [ { or } ] { or } E { f | f is an n -ary and -function or a constant function } { and , c 0 , c 1 } E 0 [ { and } ] ∪ [ { c 0 } ] { and , c 0 } E 1 [ { and } ] ∪ [ { c 1 } ] { and , c 1 } E 2 [ { and } ] { and } N [ { not } ] ∪ [ { c 0 } ] ∪ [ { c 1 } ] { not , c 1 } , { not , c 0 } N 2 [ { not } ] { not } I [ { id } ] ∪ [ { c 1 } ] ∪ [ { c 0 } ] { id , c 0 , c 1 } I 0 [ { id } ] ∪ [ { c 0 } ] { id , c 0 } I 1 [ { id } ] ∪ [ { c 1 } ] { id , c 1 } I 2 [ { id } ] { id } � n +1 Figure 1: List of all Boolean clones with bases ( h n = i =1 x 1 · · · x i − 1 x i +1 · · · x n +1 and dual( f )( a 1 , . . . , a n ) = ¬ f ( a 1 , . . . , a n )).

  2. BF R 1 R 0 R 2 M M 1 M 0 M 2 S 2 S 2 0 1 S 2 S 2 S 2 S 2 02 01 11 12 S 3 S 3 0 1 S 2 S 2 00 10 S 3 S 3 S 3 S 3 02 01 11 12 S 3 S 3 00 10 S 0 D S 1 S 02 S 01 D 1 S 11 S 12 S 00 D 2 S 10 V L E V 1 V 0 L 1 L 3 L 0 E 1 E 0 V 2 L 2 E 2 N N 2 I I 1 I 0 I 2 Figure 2: Graph of all Boolean clones.

  3. BF M L V E N I Figure 3: Graph of all Boolean clones that contain all constant functions

  4. BR II 0 II 1 II IN 2 IN IE 2 IL 2 IV 2 IE 0 IE 1 IL 0 IL 3 IL 1 IV 0 IV 1 IE IL IV IS 10 ID 2 IS 00 IS 12 IS 11 ID 1 IS 01 IS 02 IS 1 ID IS 0 IS 3 IS 3 10 00 IS 3 IS 3 IS 3 IS 3 12 11 01 02 IS 2 IS 2 10 00 IS 3 IS 3 1 0 IS 2 IS 2 IS 2 IS 2 12 11 01 02 IS 2 IS 2 1 0 IM 2 IM 0 IM 1 IM IR 2 IR 0 IR 1 IBF Figure 4: Graph of all Boolean co-clones

  5. Cl. Or. Remark Base(s) of corresponding co-clone BF 0 { = } , {∅} { x } R 0 1 dual of R 1 R 1 1 { x } R 2 1 R 0 ∩ R 1 { x, x } , { xy } M 2 { x → y } M 1 2 M ∩ R 1 { x → y, x } , { x ∧ ( y → z ) } M 0 2 M ∩ R 0 { x → y, x } , { x ∧ ( y → z ) } M 2 2 M ∩ R 2 { x → y, x, x } , { x → y, x → y } , { xy ∧ ( u → v ) } S m { OR m } m 0 S m dual of S m { NAND m } m 1 0 { OR m | m ≥ 2 } ∩ m ≥ 2 S m ∞ S 0 0 { NAND m | m ≥ 2 } S 1 ∞ dual of S 0 S m S n { OR m , x, x } 0 ∩ R 2 m 02 { OR m | m ≥ 2 } ∪ { x, x } S 02 ∞ S 0 ∩ R 2 S m S m { OR m , x → y } m 0 ∩ M 01 { OR m | m ≥ 2 } ∪ { x → y } S 01 ∞ S 0 ∩ M S m S n { OR m , x, x, x → y } m 0 ∩ R 2 ∩ M 00 { OR m | m ≥ 2 } ∪ { x, x, x → y } S 00 ∞ S 0 ∩ R 2 ∩ M S m dual of S m { NAND m , x, x } m 12 02 { NAND m | m ≥ 2 } ∪ { x, x } S 12 ∞ dual of S 02 S m dual of S m { NAND m , x → y } m 11 01 { NAND m | m ≥ 2 } ∪ { x → y } ∞ S 11 dual of S 01 S m dual of S m { NAND m , x, x, x → y } m 10 00 { NAND m | m ≥ 2 } ∪ { x, x, x → y } ∞ S 10 dual of S 00 D 2 { x ⊕ y } D 1 2 D ∩ R 1 { x ⊕ y, x } , every R ∈ {{ ( a 1 , a 2 , a 3 ) , ( b 1 , b 2 , b 3 ) } | ∃ c ∈ { 1 , 2 } such that Σ 3 i =1 a i = Σ 3 i =1 b i = c } D 2 2 D ∩ M { x ⊕ y, x → y } , { xy ∨ xyz } { EVEN 4 } L 4 { EVEN 4 , x } , { EVEN 3 } L 0 3 L ∩ R 0 { EVEN 4 , x } , { ODD 3 } L 1 3 L ∩ R 1 { EVEN 4 , x, x } , every { EVEN n , (1) } where n ≥ 3 is odd L 2 3 L ∩ R 2 { EVEN 4 , x ⊕ y } , { ODD 4 } L 3 4 L ∩ D { x ∨ y ∨ z } V 3 V 0 3 V ∩ R 0 { x ∨ y ∨ z, x } V ∩ R 1 { x ∨ y ∨ z, x } V 1 3 V 2 3 V ∩ R 2 { x ∨ y ∨ z, x, x } E 3 dual of V { x ∨ y ∨ z } E 1 3 dual of V 0 { x ∨ y ∨ z, x } E 0 3 dual of V 1 { x ∨ y ∨ z, x } E 2 3 dual of V 2 { x ∨ y ∨ z, x, x } { DUP 3 } N 3 { DUP 3 , EVEN 4 , x ⊕ y } , { NAE 3 } N ∩ L 3 N 2 3 { EVEN 4 , x → y } I 3 L ∩ M { EVEN 4 , x → y, x } , { DUP 3 , x → y } I 0 3 L ∩ M ∩ R 0 { EVEN 4 , x → y, x } , { x ∨ ( x ⊕ z ) } L ∩ M ∩ R 1 I 1 3 { EVEN 4 , x → y, x, x } , { 1 text − IN − 3 } , { x → ( y ⊕ z ) } I 2 3 L ∩ M ∩ R 2 Figure 5: Bases for all Boolean co-clones

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend