fibration of the periodical eigenfunctions manifold into
play

Fibration of the periodical eigenfunctions manifold into - PowerPoint PPT Presentation

Fibration of the periodical eigenfunctions manifold into hypersurfaces Ya. Dymarskii Moscow, MIPT, 2016 September 15 Ya. Dymarskii Fibration of the periodical eigenfunctions manifold into hypersurfaces The space of of self-adjoint periodic


  1. Fibration of the periodical eigenfunctions manifold into hypersurfaces Ya. Dymarskii Moscow, MIPT, 2016 September 15 Ya. Dymarskii Fibration of the periodical eigenfunctions manifold into hypersurfaces

  2. The space of of self-adjoint periodic eigenvalue and eigenfunction boundary-value problems − y ′′ + p ( x ) y = λ y , y (0) − y (2 π ) = y ′ (0) − y ′ (2 π ) = 0 , (1) � 2 π � � p ∈ C 0 (2 π ) | P := p ( x ) dx = 0 0 The spectrum consists of real eigenvalues, which have multiplicity at most 2: λ 0 ( p ) < λ − 1 ( p ) ≤ λ + 1 ( p ) < . . . < λ − k ( p ) ≤ λ + k ( p ) < . . . Eigenfunctions corresponding to eigenvalues with subscript k have precisely 2 k nondegenerate zeros on the half-open interval [0 , 2 π ) . Ya. Dymarskii Fibration of the periodical eigenfunctions manifold into hypersurfaces

  3. The manifold of eigenfunctions with exactly 2k zeros � 2 π Y k := { y ∈ C 2 (2 π ) : y 2 dx = 1 , (1) with λ = λ ± k ( p ) , y ∼ = − y } 0 The set Y k ( k = 0 , 1 , ... ) consists of all functions y such that: 1. there exist 2k points x i ∈ [0 , 2 π ) at which y ( x i ) = y ′′ ( x i ) = 0 , y ′ ( x i ) � = 0 ; 2. the function y has no other zeros; 3. there exist derivatives y (3) ( x i ) < ∞ 4. Y k is a manifold which locally C ∞ -diffeomorphic to space P . 5. There are mappings which recover the eigenvalue and potential: � 2 π y ′′ Λ k : Y k → R , Λ k ( y ) = λ := − 1 y dx ; 2 π 0 f k : Y k → P , f k ( y ) = p := y ′′ y + Λ k ( y ) . Ya. Dymarskii Fibration of the periodical eigenfunctions manifold into hypersurfaces

  4. The degenerate and nondegenerate eigenfunctions For k ∈ N a pair ( y , z ) ∈ Y k × Y k is said to be conjugated if these � 2 π functions are generated by the same potential p and yzdx = 0 . 0 Any eigenfunction y ∈ Y k has a unique conjugated function z = I ( y ) and I 2 ( y ) = y . If λ − ( p ) < λ + ( p ) then I ( y ± ( p )) = y ∓ ( p ) . Lacuna ( y ) is ∆Λ k ( y ) := Λ k ( y ) − Λ k ( I ( y )) , Y k (∆Λ k = C ) := { y ∈ Y k : ∆Λ k ( y ) = C } . Y k = ∪ C ∈ R Y k (∆Λ k = C ) . The set Y k (∆Λ k = 0) is called degenerate; if C � = 0 , Y k (∆Λ k = C ) is nondegenerate. 1. For any fixed C , the subset Y k (∆Λ k = C ) ⊂ Y k is a C ∞ -submanifold of codimension 1; for any C 1 � = C 2 , Y k (∆Λ k = C 1 ) ∼ = Y k (∆Λ k = C 2 ) . 2. Y k ∼ = Y k (∆Λ k = C ) × R ∼ R P 1 . Ya. Dymarskii Fibration of the periodical eigenfunctions manifold into hypersurfaces

  5. The degenerate and nondegenerate potentials | ∆ λ k ( p ) | := λ + k ( p ) − λ − k ( p ) ≥ 0 , P ( | ∆ λ k | = C ) := { p ∈ P : | ∆ λ k ( p ) | = C ≥ 0 } . P = ∪ C ≥ 0 P ( | ∆ λ k | = C ) . 1. For any fixed C > 0 , the nondegenerate subset P ( | ∆ λ k | = C ) ⊂ P is a C ∞ -submanifold of codimension 1; P ( | ∆Λ k | = C ) × R + ∼ = P \ P ( | ∆ λ k | = 0) ∼ R P 1 . 2. The degenerate subset P ( | ∆ λ k | = 0) ⊂ P is a C ∞ -submanifold of codimension 2; P ( | ∆ λ k | = 0) ∼ ∗ . 3. For C � = 0 , f k | ± C : Y k (∆Λ k = ± C ) → P ( | ∆ λ k | = | C | ) is C ∞ -diffeomorphism. 4. For C = 0 , f k | 0 : Y k (∆Λ k = 0) → P ( | ∆ λ k | = 0) is C ∞ -bundle with R P 1 as fiber; 5. For any C , Y k (∆Λ k = C ) ∼ = P ( | ∆ λ k | = 0) × R P 1 . Ya. Dymarskii Fibration of the periodical eigenfunctions manifold into hypersurfaces

  6. The analytic description of bundle of Y k For y ∈ Y k (∆Λ k = 0) Wronskian W ( y ) := W ( y , I ( y )) = y · ( I ( y )) ′ − y ′ · I ( y ) = const . The mapping � x � � ∆ λ 0 yI ( y ) dx exp y 2 W ( y ) F : Y k (∆Λ k = 0) × R → Y , F ( y , ∆ λ ) := || ... || L 2 is C ∞ -diffeomorphism and F ( y , ∆ λ ) ∈ Y k (∆Λ k = ∆ λ ) . The inverse mapping is F − 1 : Y → Y k (∆Λ k = 0) × R , � − 1 / 2  � x  � ∆ λ ( y ) 1 + 0 y · I ( y ) dx y W ( y (0)) F − 1 ( y ) = , ∆ λ ( y )  .   || ... || L 2  Ya. Dymarskii Fibration of the periodical eigenfunctions manifold into hypersurfaces

  7. Levels of functional Λ 1. For any fixed C , the subset Y k (Λ k = C ) ⊂ Y k is a C ∞ -submanifold of codimension 1; for any C 1 � = C 2 , Y k (Λ k = C 1 ) ∼ = Y k (Λ k = C 2 ) . 2. Y k ∼ = Y k (Λ k = C ) × R ∼ R P 1 . On Y k consider the vector field � 2 π y 4 dx − y 2 y ⇒ ˙ 0 y = v ( y ) := ˙ λ ( v ( y )) = 1 ⇒ � 2 π 0 ( y ′ ) 2 dx 4 there exists the vector flow F t : Y k → Y k ( −∞ < t < ∞ ) F t ( Y k (Λ k = C )) = Y k (Λ k = C + t ) . Ya. Dymarskii Fibration of the periodical eigenfunctions manifold into hypersurfaces

  8. The parametrization of manifolds Y k and P H k ⊂ C 2 (2 π ) is the set of functions η that satisfy the conditions 1. η ( x ) ∈ C 2 (2 π ) , 2. η ( x ) > 0 , � 2 π 3. η ( x ) dx = 2 π k , 0 4. � x � x � 2 π � 2 π sin 2 0 η ( t ) dt cos 2 0 η ( t ) dt dx = 0 , dx = 0 . η ( x ) η ( x ) 0 0 The set H k is homotopy trivial C ∞ -manifold. � x 0 η ( t ) dt , where ϕ ∈ R P 1 By definition θ ( x ; ϕ, η ) := ϕ + Ya. Dymarskii Fibration of the periodical eigenfunctions manifold into hypersurfaces

  9. The parametrization of manifold Y k Υ : H k × R × R P 1 → Y k , Υ( η, ∆ λ, ϕ ) := � x � ∆ λ � y sign (∆ λ ) = const sin 2 θ ( t ; ϕ, η ) η 1 / 2 ( x ) exp · cos( θ ( x ; ϕ, η )) . dt 4 η ( t ) 0 Υ is C ∞ -diffeomorphism. Ya. Dymarskii Fibration of the periodical eigenfunctions manifold into hypersurfaces

  10. The parametrization of manifold P 2 η + 3( η ′ ) 2 r ( x ) := ( y k ) ′′ = − η ′′ − η 2 + 4 η 2 y k ∆ λη ′ sin 2 θ ( x ; ϕ, η ) + ∆ λ 2 sin 2 2 θ ( ... ) − ∆ λ cos 2 θ ( ... ) + ∆ λ 2 , 2 η 2 16 η 2 � 2 π λ k = − 1 r ( x ) dx , 2 π 0 Φ : H k × R + × R P 1 → P , Φ( η, ∆ λ, ϕ ) = p ( x ) := r ( x ) + λ k . Φ is C ∞ -diffeomorphism. Ya. Dymarskii Fibration of the periodical eigenfunctions manifold into hypersurfaces

  11. Literature 1 Ya.M. Dymarskii Мanifold Method in the Eigenvector Theory of Nonlinear Operators // Jornal of Mathematical Sciences – 2008. 2 Ya. M. Dymarskii, Yu. A. Evtushenko Foliation of the space of periodic boundary-value problems by hypersurfaces to fixed lengths of the nth spectral lacuna // Sbornik: Mathematics 207:5, 2016, P. 678–701 Ya. Dymarskii Fibration of the periodical eigenfunctions manifold into hypersurfaces

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend