feynman integrals elliptic polylogarithms and mixed hodge
play

Feynman Integrals, Elliptic polylogarithms and mixed Hodge - PowerPoint PPT Presentation

Feynman Integrals, Elliptic polylogarithms and mixed Hodge structures Pierre Vanhove New Geometric structures meeting Oxford University Septembre 23, 2014 based on [arXiv:1309.5865], [arXiv:1406.2664] and work in progress Spencer Bloch, Matt


  1. Feynman Integrals, Elliptic polylogarithms and mixed Hodge structures Pierre Vanhove New Geometric structures meeting Oxford University Septembre 23, 2014 based on [arXiv:1309.5865], [arXiv:1406.2664] and work in progress Spencer Bloch, Matt Kerr Pierre Vanhove (IPhT & IHES) Elliptic polylogarithms 23/09/2014 1 / 37

  2. There are many technics to compute amplitudes in field theory ◮ On-shell (generalized) unitarity ◮ On-shell recursion methods ◮ twistor geometry, Graßmanian, Symbol,. . . ◮ Dual conformal invariance ◮ Infra-red behaviour (inverse soft-factors, ...) ◮ amplitude relations, ◮ String theory,. . . These methods indicate that amplitudes have simpler structures than the diagrammatic from Feynman rules suggest The questions are: what are the basic building blocks of the amplitudes? Can the amplitudes be expressed in a basis of integrals functions? Pierre Vanhove (IPhT & IHES) Elliptic polylogarithms 23/09/2014 2 / 37

  3. Part I One-loop amplitudes Pierre Vanhove (IPhT & IHES) Elliptic polylogarithms 23/09/2014 3 / 37

  4. The one-loop amplitude ◮ In four dimensions any one-loop amplitude can be expressed on a basis of integral functions [Bern, Dixon,Kosower] � = c r Integral r + Rational terms r Pierre Vanhove (IPhT & IHES) Elliptic polylogarithms 23/09/2014 4 / 37

  5. The one-loop amplitude ◮ The integral functions are the box, triangle, bubble, tadpole ◮ The integrals functions are given by dilogarithms and logarithms � z Boxes , Triangles ∼ Li 2 ( z ) = − log ( 1 − t ) d log t 0 � z Bubble ∼ log ( 1 − z ) = d log ( 1 − t ) 0 Pierre Vanhove (IPhT & IHES) Elliptic polylogarithms 23/09/2014 4 / 37

  6. The one-loop amplitude This allows to characterize in a simple way one-loop amplitudes in various gauge theory ◮ Only boxes for N = 4 SYM for one-loop graph ◮ No triangle property of N = 8 SUGRA [Bern, Carrasco, Forde, Ita, Johansson; Arkani-hamed, Cachazo, Kaplan; Bjerrum-Bohr, Vanhove] ◮ Only box for QED multi-photon amplitudes with n � 8 photons [Badger, Bjerrum-Bohr, Vanhove] Pierre Vanhove (IPhT & IHES) Elliptic polylogarithms 23/09/2014 4 / 37

  7. Monodromies, periods ◮ Amplitudes are multivalued quantities in the complex energy plane with monodromies around the branch cuts for particle production ◮ They satisfy differential equation with respect to its parameters : kinematic invariants s ij , internal masses m i , . . . ◮ monodromies with differential equations : typical of periods integrals Pierre Vanhove (IPhT & IHES) Elliptic polylogarithms 23/09/2014 5 / 37

  8. A one-loop example I We consider the 3-mass triangle p 1 + p 2 + p 3 = 0 and p 2 i � 0 � d 4 ℓ I ⊲ ( p 2 1 , p 2 2 , p 2 3 ) = ℓ 2 ( ℓ + p 1 ) 2 ( ℓ − p 3 ) 2 R 1 , 3 Which can be represented as � dxdy I ⊲ = ( p 2 1 x + p 2 2 y + p 2 3 )( xy + x + y ) x � 0 y � 0 Pierre Vanhove (IPhT & IHES) Elliptic polylogarithms 23/09/2014 6 / 37

  9. A one-loop example II and evaluated as D ( z ) I ⊲ = � � 1 p 4 1 + p 4 2 + p 4 3 − ( p 2 1 p 2 2 + p 2 1 p 2 3 + p 2 2 p 2 3 ) 2 z roots of ( 1 − x )( p 2 3 − xp 2 1 ) + p 2 z and ¯ 2 x = 0 ◮ Single-valued Bloch-Wigner dilogarithm for z ∈ C \{ 0 , 1 } D ( z ) = ℑ m ( Li 2 ( z )) + arg ( 1 − z ) log | z | ◮ The permutation of the 3 masses: { z , 1 − ¯ z , 1 z , 1 − 1 1 ¯ z z , 1 − z , − z } ¯ 1 − ¯ this set is left invariant by the D ( z ) ◮ The integral has branch cuts arising from the square root since D ( z ) is analytic Pierre Vanhove (IPhT & IHES) Elliptic polylogarithms 23/09/2014 7 / 37

  10. The triangle graph motive I � dxdy I ⊲ = ( p 2 1 x + p 2 2 y + p 2 3 )( xy + x + y ) x � 0 y � 0 The integral is defined over the domain ∆ = { [ x , y , z ] ∈ P 2 , x , y , z � 0 } and the denominator is the quadric C ⊲ := ( p 2 1 x + p 2 2 y + p 2 3 z )( xy + xz + yz ) Let L = { x = 0 } ∪ { y = 0 } ∪ { z = 0 } and D = { x + y + z = 0 } ∪ C ⊲ dxdy 3 )( xy + x + y ) ∈ H := H 2 ( P 2 − D , L \ ( L ∪ C ⊲ ) ∩ L , Q ) ( p 2 1 x + p 2 2 y + p 2 We need to consider the relative cohomology because the domain ∆ is not in H 2 ( P 2 − D ) because ∂∆ ∩ � ∅ Pierre Vanhove (IPhT & IHES) Elliptic polylogarithms 23/09/2014 8 / 37

  11. The triangle graph motive II Since ∂∆ ∩ C ⊲ = { [ 1 , 0 , 0 ] , [ 0 , 1 , 0 ] , [ 0 , 0 , 1 ] } one needs to perform a blow-up these 3 points. One can define a mixed Tate Hodge structure [Bloch, Kreimer] with weight W 0 H ⊂ W 2 H ⊂ W 4 H and grading gr W gr W 2 H = Q (− 1 ) 5 , gr W 0 H = Q ( 0 ) , 4 H = Q (− 2 )   The Hodge matrix and unitarity   0 0     1 0 0       − Li 1 ( z ) 2 i π 0   0   ( 2 i π ) 2 − Li 2 ( z ) 2 i π log z     ◮ The construction is valid for all one-loop amplitudes in four dimensions Pierre Vanhove (IPhT & IHES) Elliptic polylogarithms 23/09/2014 9 / 37

  12. Part II Loop amplitudes Pierre Vanhove (IPhT & IHES) Elliptic polylogarithms 23/09/2014 10 / 37

  13. Feynman parametrization ◮ Typically form of the Feynman parametrization of a graph Γ ◮ A Feynman graph with L loops and n propagators � ∞ n U n −( L + 1 ) D n � � 2 I Γ ∝ δ ( 1 − x i ) dx i ( U � i x i − F ) n − L D i m 2 0 2 i = 1 i = 1 ◮ U and F are the Symanzik polynomials [Itzykson, Zuber] ◮ U is of degree L and F of degree L + 1 Pierre Vanhove (IPhT & IHES) Elliptic polylogarithms 23/09/2014 11 / 37

  14. Feynman parametrization and world-line formalism ◮ Rewrite the integral as δ ( 1 − � n � n � ∞ i = 1 x i ) i = 1 dx i I Γ ∝ ( � F ) n − L D D i x i − � i m 2 U 0 2 2 ◮ U = det Ω is the determinant of the period matrix of the graph ◮ The period matrix of integral of homology vectors v i on oriented � loops C i Ω ij = v j C i Pierre Vanhove (IPhT & IHES) Elliptic polylogarithms 23/09/2014 12 / 37

  15. Feynman parametrization and world-line formalism ◮ Rewrite the integral as � ∞ δ ( 1 − � n � n i = 1 x i ) i = 1 dx i I Γ ∝ ( � i x i − � F ) n − L D D i m 2 U 0 2 2 ◮ U = det Ω is the determinant of the period matrix of the graph � T 1 + T 3 � T 3 Ω 2 ( a ) = T 3 T 2 + T 3 Pierre Vanhove (IPhT & IHES) Elliptic polylogarithms 23/09/2014 12 / 37

  16. Feynman parametrization and world-line formalism ◮ Rewrite the integral as δ ( 1 − � n � n � ∞ i = 1 x i ) i = 1 dx i I Γ ∝ ( � i x i − � F ) n − L D D i m 2 U 0 2 2 ◮ U = det Ω is the determinant of the period matrix of the graph   T 1 + T 2 T 2 0   Ω 3 ( b ) = T 2 T 2 + T 3 + T 5 + T 6 T 3 0 T 3 T 3 + T 4 Pierre Vanhove (IPhT & IHES) Elliptic polylogarithms 23/09/2014 12 / 37

  17. Feynman parametrization and world-line formalism ◮ Rewrite the integral as δ ( 1 − � n � n � ∞ i = 1 x i ) i = 1 dx i I Γ ∝ ( � i x i − � F ) n − L D D i m 2 U 0 2 2 ◮ U = det Ω is the determinant of the period matrix of the graph   T 1 + T 4 + T 5 T 5 T 4   Ω 3 ( c ) = T 5 T 2 + T 5 + T 6 T 6 T 4 T 6 T 3 + T 4 + T 6 Pierre Vanhove (IPhT & IHES) Elliptic polylogarithms 23/09/2014 12 / 37

  18. Feynman parametrization and world-line formalism ◮ Rewrite the integral as δ ( 1 − � n � n � ∞ i = 1 x i ) i = 1 dx i I Γ ∝ ( � i x i − � F ) n − L D D i m 2 U 0 2 2 F = � ◮ � 1 � r < s � n k r · k s G ( x r , x s ; Ω ) sum of Green’s function ( x r − x s ) 2 G 1 − loop ( x r , x s ; L ) = − 1 2 | x s − x r | + 1 . 2 T Pierre Vanhove (IPhT & IHES) Elliptic polylogarithms 23/09/2014 13 / 37

  19. Feynman parametrization and world-line formalism ◮ Rewrite the integral as δ ( 1 − � n � n � ∞ i = 1 x i ) i = 1 dx i I Γ ∝ ( � i x i − � F ) n − L D D i m 2 U 0 2 2 F = � ◮ � 1 � r < s � n k r · k s G ( x r , x s ; Ω ) sum of Green’s function ( x s − x r ) 2 same line ( x r , x s ; Ω 2 ) = − 1 2 | x s − x r | + T 2 + T 3 G 2 − loop 2 ( T 1 T 2 + T 1 T 3 + T 2 T 3 ) 2 ( x r + x s ) + T 3 ( x r + x s ) 2 + T 2 x 2 r + T 1 x 2 diff line ( x r , x s ; Ω 2 ) = − 1 G 2 − loop s 2 ( T 1 T 2 + T 1 T 3 + T 2 T 3 ) Pierre Vanhove (IPhT & IHES) Elliptic polylogarithms 23/09/2014 13 / 37

  20. Periods ◮ A Feynman graph with L loops and n propagators � ∞ n n U n −( L + 1 ) D � � 2 I Γ ∝ δ ( 1 − x i ) dx i ( U � i x i − F ) n − L D i m 2 0 2 i = 1 i = 1 ◮ [Kontsevich, Zagier] define periods are follows. P ∈ C is the ring of periods, is z ∈ P if ℜ e ( z ) and ℑ m ( z ) are of the forms � n f ( x i ) � dx i < ∞ g ( x i ) ∆ ∈ R n i = 1 with f , g ∈ Z [ x 1 , · · · , x n ] and ∆ is algebraically defined by polynomial inequalities and equalities. Pierre Vanhove (IPhT & IHES) Elliptic polylogarithms 23/09/2014 14 / 37

  21. Periods ◮ [Kontsevich, Zagier] define periods are follows. P ∈ C is the ring of periods, is z ∈ P if ℜ e ( z ) and ℑ m ( z ) are of the forms � n f ( x i ) � dx i < ∞ g ( x i ) ∆ ∈ R n i = 1 with f , g ∈ Z [ x 1 , · · · , x n ] and ∆ is algebraically defined by polynomial inequalities and equalities. ◮ Problem for Feynman graphs ∂∆ ∩ { g ( x i ) = 0 } � ∅ ◮ Generally the domain of integration is not closed ∂∆ � ∅ ◮ Need to consider the relative cohomology and perform blow-ups [Bloch,Esnault,Kreimer] Pierre Vanhove (IPhT & IHES) Elliptic polylogarithms 23/09/2014 14 / 37

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend