fax
play

fax pcxiysfex.gs ] ELF interest = t T variable Probability - PowerPoint PPT Presentation

Probabilistic Reasoning Problem This Course Cone in of Quantity f fax pcxiysfex.gs ] ELF interest = t T variable Probability density Random - driving Self Diagnosis Cars Pedestrian Trajectory Symptoms y Examples Future


  1. Probabilistic Reasoning Problem This Course Cone in of Quantity f fax pcxiysfex.gs ] ELF interest = t T variable Probability density Random - driving Self Diagnosis Cars Pedestrian Trajectory Symptoms y Examples Future Trajectory Conditions x Cross ? Will Pedestrian f Outcomes

  2. Random Variables Random A Variable variable : Event stochastic mutually ) ( with outcome exclusive a X { 1. 2,345,6 } variable outcome × e x A of outcomes set : 3) ( X { 4 } ( { 5,6 } ) X=n → 3. z = 4. Probability that The chance an : event occurs 1 16 } ) 4/6 PCX ) P(X=u ? = =

  3. Distributions A distribution outcomes maps probabilities to P(X=x 1/6 ) { } 3.4.56 xe i. z = , ) ( abused shorthand Commonly used ; or P(X=x ) PK ) =

  4. 516 316 Condition Xf5 .at Probabilities Probability Joint 133=216 B ) B) A PCA PLAN :X 4 > i = , 9 W In B : Event Events DIA ) = Probability Conditional pc B) = B ) PCA B ) PLA pl A. I i= , PCAIB ) 21.5 PCB ) i P( BIA ) 213 - -

  5. Sum Rule General PCB PLA Au Case Men with short hair short hair Either man on f 0.4 - B ) P ( ) PC A. B) ) + = - p in 0.5+0.6 orrolariies Short hair oh Is - man 0,6 0.5 0.7 = ( Random Outcome var To f [ P(4=y)={P(4=y,X=× ) PCA P(X=x ) ) = A x e r form ) ( Most Event common

  6. Bayes Rule . Rule Product PCB ) } . B ) ) From P AIB P( ( def A. = . A ) P( ) BIA p( conditional of = Bayes Rule ' B ) ( A. B) P ( ) P ( definition A 1 = ) PCB PIA ) PLBIA ) ( pnod rule ) = PCB )

  7. Example You A have PCA disease : rare a ) PGA PCA ) 9999 ooo o = = , o . . for positive B Test disease is i P ( A) B I 0.0001=0.00099 0.99 0.99 = . lol I I 0 ooo A ) . P ( 0.9999 B I PIBlA)P(A)- . ol o.O I o n = , = . o.o PCB ) PCBIA ) PCA ) Pl BHA ) PGA ) t = = o.o Question ? What ) 1B is : 0.000 ' p ( ) A/B = = o.o , = PCB ) 0.0101

  8. Densities Probability Suppose X variable that continuous is a P(X=x ) then for outcome 0 is × any PCX=i)=o Normal ( X~ 0,1 ) 4) PC =/ SXS 3 o Define \ density event function ) informal ( +8 ) P( 8s×< x x - lim pxcxs = . 28 8 → o

  9. P ) Probability ( Space PC [ D F PCs , , R Sample space ) ( set of outcomes F- Set events of possible subsets ( set of outcomes ) of Probability P measure probabilities events ) C far = ? C Ei ) Ei ) ! P P , ] F [ : → o , probs ) events to maps C ¢ ) P when Ei disjoint C empty o - at - o ) Was prob ) ( probabilities =L ( all of Sample satisfy Sum hers prob I ) rule ) space

  10. Measures Examples ) probability of not C measure Lebesgue Measure : ) ( of b- width a ,b ] ) µ( interval [ a = Measure Counting : µ ( ; ! , ) ) ( elements { xi 3 of number n = Product Measure : ) ( E ) ( µ{ Cartesian µ , ( , ) Ez ) µ E product = ( E E , ,Ez ) :=

  11. PCA ) /×eA Definition Probability Measure of If ! differential of f reference measure Px ' xw.r.t.ir it Radar µ ihodynr - derivative Notation Machine Learning Implicitly assumes = ↳ f P ( A ) dx measure ) reference µ pix \ Implicitly refers to density µ of X w.at .

  12. Values Expected ( X is hand van a ) ) X pcx ) with density ~ pcx :-. / X ) II [ dx pcx ) x Expectation Conditional := ) f II [ f ( x. I 4=y ] 4) ( dx pcxiy ) g) x. Expectation different distribution w.at a . = / fix Eacx , [ f ( x ) ] ( learning ) Machine dx > ) qcx

  13. Central problem this in course ) ) µ Quantity Interest of I a Epcxiyslftx know Things we Things know We don't Examples - driving Self Cars Diagnosis Past trajectory Symptoms y Condition Future trajectory × f- Treatment Will pedestrian Outcome ? cross

  14. Probabilistic | IT ' Stochastic Simulators as FE→① of ② Models f - - ' 2- goal 7- 7 goal ) I i p C u - " - ' c assumptions about ! ! ) likely destinations . . i i g ! 7 goal .to ) pctii.tk Z ~ lit ③ o - / H ) simulation . pedestrian C p µ to ) PC Ftt I F. ~ Zenit it , , ) ( about trajectories inference

  15. HED But General Bayesian Inference is , ) Eti to P to ) it ( Ft , I Z P lit = , T , is o ) 7- 7 t PC ii. , ( known ) distribution predictive as =/ dtgpcz.it/Zo.2-g)pc7g ) - o ) 7- pc 2- lit , ¢ all integrate to need over possible locations goal ( ) almost intractable always

  16. Making Tractable Inference Conditional Independence I . Conjugacy 2 . Approximate 3 Inference . Methods Monte Carlo Epcxiyslfk.gs/=ssf?fCx5y1xsnpcxiy7 Variational Methods : D ( ) ) It # ;¢ 4 got potty ) = argqmin

  17. Conditional Independence Example Clustering : E , Lu ply , E ) b- . ,k Mh i - . . . , , " pen an ni - . . . . , M , Eu ) Nlplh - k ynlzn a - " ( Yi N ) = ldptdfdttpy.7.lu KXZXZ K P k×2 - - - , , E) Intractable ply ) : pgjtiy.lu EI ) E) I Tractable pltnlyn.lu : , = , , Kk " KXN

  18. Conjugacy Yn Biased Example Coins : Beta Bernoulli X C a , B ) ( X ) n n Bayes Rule yn ) p ( X 4 4µ= I y = , , . . , . , l 41 X ) p CX ) 4N I Yi P y - = - . " . , . , = yn ) ( 4 Up , p = y e , . , . . . ,

  19. Prior ;qp7= . ×sP ' 1- xa ' " Betak ( , BC 0,137 Same dependence B 19,13 ) p( a) p( p > = × on ; - P( bur ) dtp xfoo x ) ( Likelihood , - N M Yn ply lx ) plynlx ) i. d i. :N are = , n =| . Yn { ' YE ×Yn × ' Plyntx ) × , ( , = . = yn=o x ) 1 i -

  20. Conjngacy ) Plx I ply , :µ,× ) a ply yi :µ,×7 ,u : = , - ) plyiin ( Yi ) x ) P ply ) 1 :µ,× pk = , :X , xo N ' ' M×Yn( , " " . xsp -9 "c , 1 × , = . .nl?Ya.ynDtB Bam n= , ×lEYmto ' ' . ' 1 , , = Blair Tµunw (" Number heads tails of of N ) µ ) out of ( out ( of

  21. Conjngacy ) Plx I ply , :µ,× ) yi a ply ,×7 :µ = in , - ) plyiin ( Yi ) × ) I P ply :µ,× pk = ) , :X , " 17×9 xo N " " -9 . xsp "a 1 " × , ( i. = .nl?Yn.ynDtB B( a ,p7 n= t ' , = E. ×l§ £ ynlta ynta ' ' . . , , , . , = × ' B( a ,p7 ={ § yn)tB ( i - no , BK.PT ×£' am PKII ' , ,5l Bk ci = = . Bcqp , , ,3 ,

  22. Does Depends not Conjhgacy dependant x on . . BC I. B ) Betak;I F) × ) ply = :n , , , Bla B) , ) ) PCX plyi yi 1 = :u :µ Posterior ) Betak 2 p ) ; pcxiyi :n = 's , 2=a+µheadspn=p+µtai Marginal Likelihood BLEE ) ) ply :u = , BK ,p )

  23. Predictive Distribution | :X , ) ( , ) 1 dx Yi Yi plymti × p 1 yµ+ = :X , , / ) 1×1 pklyi dx ( yµ+ = p :N , ) ) :* ) [ Epcxiy plyntilx = , Weighted Example Coin ) ( Exercise

  24. Approximate Inference

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend